Option Pricing under Stochastic Volatility of US REITs
Gianluca Marcato and Tumellano Sebehela
Agenda

• Background
• M&As within REITs Industry
• Data
• REITs Margrabe (1978) Model
• Stochastic Process
• Empirical Results
 – GARCH (1;1) Parameters
 – Call Option Values
• Conclusion
Introduction/Motivation

- During the mid-1990s the US economy was booming.
- IPOs (REOCs) or M&As (REITs).
- Sometimes NAVs ≠ Share Prices.
- Possible reasons: best valuation technique, arbitrage opportunities or extra value.
- Debate on how best to value transactions.
 - DCFs, Earnings Based Valuations (DDM or AFFO) & NAVs.
 - NAV(stable asset base), although EBVs robust but subjective.
- Unconventional Pricing: Exchange Options.
Literature Review

• REITs grew from $9 bn to $128 bn by 1997: Clayton et al. 2007:

• Direct Investment Portfolios (DIPs) vs. Stock Investment Portfolios (SIPs): Anderson et al. 2002.

• Acquisition supports REITs’ long-term growth
 - lower dividend payout and rest for acquisition,
 - external funding.

• M&A induces growth:
 - Easier to growth small-caps, but mega-caps benefited more.
Data

• SNL Financials:
 – 179 (92 on REOCs & 87 on REITs) completed US M&A deals
 – From 1994 to 2009.

• M&A deals with no specific trend
 – REOCs & REOCs, REOCs & REITs, and REITs & REITs.

• Cleaning
 – 92 on REOCs and on 47 REITs poor recorded data.

• Final sample: 40 completed M&A deals on REITs merging with REITs
 – M&As of acquirers and targets were in the same/similar line of business at different times.

• Restrictions to be relaxed to increase the sample
Model 1

- Margrabe (1978) and Sebehela (2008) illustrated that a call option of Margrabe (1978) model can be written as:

\[
C[S_1, S_2, (T - \tau)] = S_1 e^{-\gamma_1 (T - \tau)} N(d_1) - S_2 e^{-\gamma_2 (T - \tau)} N(d_2)
\]

where

\[
d_1 = \frac{\ln(S_1 / S_2) + (\gamma_1 - \gamma_2 + \frac{\sigma_p^2}{2}) \times (T - \tau)}{\sigma_p \sqrt{T - \tau}}
\]

and

\[
d_2 = \frac{\ln(S_1 / S_2) + (\gamma_1 - \gamma_2 - \frac{\sigma_p^2}{2}) \times (T - \tau)}{\sigma_p \sqrt{T - \tau}}
\]

- Lagging effect in real estate markets (i.e. IPD yearly appraisal).
Model 2

- NAVs account for the lagging effect that is not captured by share prices.
- Injected funds (external or internal) treated as “extra value” to existing project’s value: Ahnefeld and Mehler-Bicher (2002), Davis et al. 2004, Jaimungal and Lawryshyn (2009).
- Lambda (λ) will represent the “extra value”.
- REITs Margrabe (1978) model before and after taking into lambda (λ).
Model 2: Continue

\[
C[(NAV_1 + \lambda), NAV_2, (T - \tau)] = (NAV_1 - \lambda) e^{-\gamma_1 (T - \tau)} N(d_1) - NAV_2 e^{-\gamma_2 (T - \tau)} N(d_2)
\]

\[
\ln \left[\frac{(NAV_1 + \lambda)}{NAV_2} \right] + \left(\gamma_1 - \gamma_2 + \frac{\sigma_p^2}{2} \right) \times (T - \tau)
\]

\[
d_1 = \frac{\ln \left[\frac{(NAV_1 + \lambda)}{NAV_2} \right] + \left(\gamma_1 - \gamma_2 + \frac{\sigma_p^2}{2} \right) \times (T - \tau)}{\sigma_p \sqrt{T - \tau}}
\]

\[
\ln \left[\frac{(NAV_1 + \lambda)}{NAV_2} \right] + \left(\gamma_1 - \gamma_2 - \frac{\sigma_p^2}{2} \right) \times (T - \tau)
\]

\[
d_2 = \frac{\ln \left[\frac{(NAV_1 + \lambda)}{NAV_2} \right] + \left(\gamma_1 - \gamma_2 - \frac{\sigma_p^2}{2} \right) \times (T - \tau)}{\sigma_p \sqrt{T - \tau}} \quad \text{or} \quad d_2 = d_1 - \sigma_p \sqrt{T - \tau}
\]
Stochastic Process

- Stochastic process is Martingale is for all $s \leq t$ and its expectation should be represented as follows:

$$E[X_t - X_s \mid (X_s)_{t \geq s}] = 0$$

$$E[NAV_t \mid F_s] = E[NAV_s + NAV_t - NAV_s \mid F_s]$$

$$= E[NAV_s \mid F_s] + E[NAV_t - NAV_s \mid F_s]$$

$$= NAV_s + E[NAV_t - NAV_s \mid F_s]$$
Main Results 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPG_1</td>
<td>0.01</td>
<td>0.18</td>
<td>0.0000058</td>
<td>0.00</td>
<td>0.20</td>
<td>0.00</td>
<td>0.001</td>
<td>0.06</td>
<td>0.002</td>
<td>0.96</td>
<td>0.44</td>
<td>0.00</td>
<td>0.64</td>
</tr>
<tr>
<td>SPG_2</td>
<td>0.02</td>
<td>0.90</td>
<td>0.0000004</td>
<td>0.02</td>
<td>0.08</td>
<td>0.00</td>
<td>0.040</td>
<td>0.78</td>
<td>0.040</td>
<td>0.17</td>
<td>0.91</td>
<td>0.00</td>
<td>0.99</td>
</tr>
<tr>
<td>SPG_3</td>
<td>0.03</td>
<td>0.99</td>
<td>0.0000003</td>
<td>0.48</td>
<td>0.13</td>
<td>0.14</td>
<td>0.003</td>
<td>0.17</td>
<td>0.100</td>
<td>0.31</td>
<td>0.92</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>SLG</td>
<td>0.01</td>
<td>0.16</td>
<td>0.0000061</td>
<td>0.00</td>
<td>0.17</td>
<td>0.00</td>
<td>0.001</td>
<td>0.11</td>
<td>0.028</td>
<td>0.39</td>
<td>0.43</td>
<td>0.00</td>
<td>0.60</td>
</tr>
<tr>
<td>UDR</td>
<td>0.01</td>
<td>0.32</td>
<td>0.0000050</td>
<td>0.00</td>
<td>0.10</td>
<td>0.01</td>
<td>0.000</td>
<td>0.68</td>
<td>0.311</td>
<td>0.01</td>
<td>0.61</td>
<td>0.00</td>
<td>0.71</td>
</tr>
<tr>
<td>VNO</td>
<td>0.02</td>
<td>0.39</td>
<td>0.0000043</td>
<td>0.00</td>
<td>0.27</td>
<td>0.00</td>
<td>0.000</td>
<td>1.00</td>
<td>0.137</td>
<td>0.00</td>
<td>0.56</td>
<td>0.00</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Source: SNL Financials
Note: Parameters were simulated using Eviews
GARCH (1;1) Parameters
Main Results 2

<table>
<thead>
<tr>
<th>Acquirer's Ticker</th>
<th>Target</th>
<th>Acquirer's line of business</th>
<th>Target's line of business</th>
<th>Call (Share Prices)</th>
<th>Call (Share Prices & Funds)</th>
<th>Funds Factor (SP)</th>
<th>Call (NAVs)</th>
<th>Call (NAVs & Funds)</th>
<th>Funds Factor (NAV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPG_1</td>
<td>Chelsea Property Group</td>
<td>Region Mall</td>
<td>Outlet Center</td>
<td>-1.01</td>
<td>-0.1</td>
<td>0.897</td>
<td>0.3</td>
<td>0.34</td>
<td>0.139</td>
</tr>
<tr>
<td>SPG_2</td>
<td>DeBartolo Realty Corp.</td>
<td>Region Mall</td>
<td>Region Mall</td>
<td>7.57</td>
<td>8.49</td>
<td>0.122</td>
<td>7.2</td>
<td>7.28</td>
<td>0.011</td>
</tr>
<tr>
<td>SPG_3</td>
<td>MSA Realty Corp.</td>
<td>Region Mall</td>
<td>Shopping Centre</td>
<td>18.8</td>
<td>16.98</td>
<td>0.097</td>
<td>0.54</td>
<td>0.54</td>
<td>0.002</td>
</tr>
<tr>
<td>SLG</td>
<td>Reckson Associates Realty Corp.</td>
<td>Office</td>
<td>Office</td>
<td>41.33</td>
<td>40.6</td>
<td>0.018</td>
<td>5.09</td>
<td>7.48</td>
<td>0.47</td>
</tr>
<tr>
<td>UDR</td>
<td>American Apartment Com.</td>
<td>Multi-Family</td>
<td>Multi-Family</td>
<td>-1.55</td>
<td>-1.38</td>
<td>0.106</td>
<td>8.43</td>
<td>8.82</td>
<td>0.046</td>
</tr>
<tr>
<td>VNO</td>
<td>Arbor Property Trust</td>
<td>Diversified</td>
<td>Region Mall</td>
<td>23.67</td>
<td>24.41</td>
<td>0.031</td>
<td>11.43</td>
<td>11.47</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Source: SNL Financials

Call Option Values
Figure 1

Source: National Council of Real Estate Investment Fiduciaries (NCREIF)
Conclusions

• When one REIT takes over another, there is “extra” occurring value from M&A.
• Although, NAV is not robust, it gives a better picture about the real situation.
• Share prices lead to misleading conclusions about M&A of REITs.
• M&A increase value without a REIT changing anything operationally.
Further Research

• Option pricing of REITs M&A under bearish market.

• When analysing REITs, when is it better to use share prices and when is it better to use NAVs.

• Option pricing of REOCs M&A using Margrabe (1978) model.
Thank You

QUESTIONS?