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ABSTRACT.

The aim of this paper is to analyse the spatial behaviour of the free housing price in
Albacete. We decided to write it because of the socieconomic importance of the housing
subsector in the local, regional and national economy and its implications for Housing Policy.

To achieve this aim, we have used the models and estimators imported from Geology,
called kriging. In the geostatistics bibliography, the theoretical methodology is precise, since it
estimates a spatial process in a point or region in space as a linear combination of a part of the
spatial observations or all of them. In order to do this,  it is neccesary to know the structure of
spatial dependence of the process which is shown in the variogram and, assuming that the
process verifies second order or intrinsic stationarity, then the ordinary or the universal kriging
estimator can be calculated respectively.

Before applying this procedure to study the housing price in Albacete, the factors which
settle their price are analysed (size, age, quality and with or without garage). By deleting such
effects and by reducing all the observations to a “class of equivalent housing”, four methods of
modelization and estimation are used: universal kriging and ordinary kriging on the residuals of
a generalized additive model for the point estimation, and universal kriging and median polish
kriging for the block estimation. We select the last one as the best one to model the spatial
behaviour of the housing price in Albacete.

Keywords: Kriging prediction, spatial model, housing price.
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1.- INTRODUCTION.

The importance of geographic space and its incorporation to economic analysis, both in
theoretical and empirical studies, is based on two main reasons:

- It is the natural support upon which a large of regional economic variables are
measured.
-  Its influence on these variables, whose values show a spatial pattern of behaviour.

 Traditionally, spatial distribution  has not been taken into account in regional economic
analysis. However, economic variables in time have been more studied, perhaps removing spatial
study due to its greater complexity (countless ways in space against only one way in time) and
the lack of specific computer programs. 

Nowadays, both obstacles are being partially mitigated. Firstly by publication of studies
more rigorous and homogeneous, the efforts accomplished by Matheron (1970), Cliff and Ord
(1981), Anselin (1988, 1995) and Cressie (1993), who have carried Spatial Statistic taking entity
as a knowledge area. Second by the appearance of statistics computer programs (S-plus,
Variowin, etc.) which make working in Spatial Statistics easier. Finally, by the development of
Geographical Information Systems (G.I.S), which constitutes a powerful tool for the analysis of
georeferenced variables.

The aim of this paper is to model the free housing price in Albacete from a spatial
perspective, because it seems reasonable to consider that specific location of housing is
influenced, among other factors, by adjacent housing prices (spatial diffusion phenomenon). For
this purpose, we will use spatial linear models and the Best Linear Unbiased Estimators (BLUE),
called kriging estimators on Geostatistic field (Krige (1951), Goldberger (1962), Matheron
(1952,1963)).

2.- SPATIAL DATA MODEL.

A spatial data collection can be considered as a stochastic process or random function
realization

where u is a location in D domain, contained in a d dimension space (generally 1,2 or 3). For
each location  u,  y(u) is a random variable. To carry out this analysis, we must model the spatial
stochastic process  y(u). Generally, inference is not possible based on only one stochastic process
realization  y(u). Therefore we will set some restrictions in terms of stationarity hypothesis. We
will assume a certain regular spatial behaviour for the first moments process or their increments.

We will suppose that, for each u, first and second order moment exist and they are finite,
then we have that E[y(u)] and  var[y(u)]exist and  y(u) can be separated into:

where m(u) is a function that represents y(u) mean 
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E[y(u)] = m(u),

and e(u) is a stochastic error process with
E[e(u)] = 0.

In particular, e(u) = y(u) - m(u). For our purposes, we must model m(u) and e(u).
More formally, if we assume a linear structure for mean m(u), we obtain what is known in
Geostatistic as “universal kriging model”. The existence of p known  functions, x1(u),..., xp(u)
is supposed in such a way that

for certain unknown fixed parameters $1,...,$p.

We can distinguish two particular cases:

a) Ordinary kriging in which the mean of the process is constant.
b) Simple kriging in which the mean of the process is constant and known.

We will obtain the most general estimator (Universal kriging). Furthermore, some small
changes will provide us with the estimator in the other cases.

For modelling error process, we will be especially interested in second order error
properties. The covariance function is defined as:

Using the following notation

and

the universal kriging model can be written on matrix form:
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where  EEEE= (Fij)  y  Fij= F(ui,uj).

Generally, the matrix GGGG is not singular and the functions xj(u) and locations u are taken
so that X has maximum range, by columns, with J 0 C(X). Under maximum range hypothesis,
since $$$$ can be estimated for any location u0, then  x0'$$$$ can also be estimated. Let 

The best linear unbiased predictor for y0 is (Christensen, 1991):

where  y , that can be written as:

where 

The mean of the squared prediction errors (variance of prediction) is:

Kriging estimator properties.

The most important properties of this estimator are:

1.- The kriging estimator is linear, unbiased and optimum (BLUE).

2.- The kriging estimator is exact. That is to say that if u0  coincides with the location
of some experimental points  ui (points which we have information), then the estimated
value equals observed value and the estimation error variance is null.

3.- The kriging method as spatial estimation instrument is fundamentally
characterized by taking into account the geometry or spatial structure of data.

4.- The cross validation method allows us to evaluate experimental errors of
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estimation. It consists of fictionally suppressing each observation yi and estimating it
using kriging. In this way we obtain the estimation of experimental errors   The
analysis of these errors through different statistics provides a goodness-of-fit measure.

Covariance function and variogram estimation

All information concerning spatial dependency comes from covariance function or
variogram. Since both of them belong to universal kriging estimator expressions, we must
estimate these functions by fitting them to useful practical models. These models are spherical,
gaussian, linear, exponential and potential, which can be estimated by maximum likelihood,
restricted maximum likelihood, minimum quadratic norm or traditional geostatistics method
(method of moments). The first two methods can only be applied in the presence of normal
residuals. 

In this way, we obtain an experimental estimated variogram, but only for a few distances.
Therefore, in order to predict we need a theoretical model for covariance function or variogram
in such a way that we can evaluate these functions for distances on which we usually have no
information.

3.- METHODOLOGICAL CONSIDERATIONS.

 The theoretical side of methodology is quite clear, since the aim is to estimate a spatial
process in a point or set of points of space as a linear combination of all (or part) of the
observations.  So it is enough to know the spatial dependency structure of the process integrated
in the variogram  and, if  the process is stationary of second order or intrinsically stationary
(second order stationary of increments), then it is possible to calculate the ordinary or universal
kriging estimator, respectively, to obtain the prediction. But just at this point the main problems
of a practical type arise, due to difficulties in knowing the real structure of the spatial variability
of the process.

There are two main problems. First, how to estimate the parameters of a theoretical
variogram from empirical variogram, so that the fitting is accomplished in an optimum way and
taking into account that the usual fitting procedures are invalid. Second,  how to do spatial
processes prediction in the presence of spatial drift or trend. In theory, if the process is
intrinsically stationary we should apply universal kriging, but it can not be done because it is
impossible to estimate directly the theoretical variogram in trend presence.

Theoretical variogram estimation.

The variogram appears in kriging equations whenever we make predictions or calculate
their variance.The variogram function is defined for any distance between locations.Since it may
be location pairs for which we have no information, we must estimate the theoretical model from
the empirical variogram.

When we have calculated the experimental variogram (having amended any possible
anisotropy),  we decide the kind of theoretical model we are going to use. Then, the fitting can
be carried out in two ways:
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1) By an “interactive way”. Programs such as Variowin or Splus Spatial Stats allow us
an iterative estimation of theoretical variograms starting from some initial values and reducing
the error of estimation until it reaches a satisfactory level.  

2) Estimating by “non-linear least squares”. We can fit the theoretical model by
optimization, usually through non-linear least squares. The usual statistical hypothesis for
non-linear regression models are invalid to fit variograms since the different values of variogram
function are not independent. Cressie (1985) describes procedures based on generalized least
squares and weighted least squares for variogram fitting, that take into account the particular
structure of the variogram values. Zimmerman and Zimmerman (1991) compares different
estimation methods and concludes that estimation by non-linear or weighted (through some
specific function) least squares can be considered valid for most of the more sophisticated and
computationally intensive methods.

Cressie (1985) suggests the following weighted non-linear least squares estimator:

where  is the number of different pairs at distance  h, and the sum is computed for every
distance in which the empirical variogram has been calculated.  is the value for the
empirical variogram on the distance h, and   is the theoretical variogram with unknown
parameters. These weights can be easily included in the non-linear least squares procedure (nls)
through a function for the residuals that incorporates the previous weights.

Estimation and prediction under spatial trend.

Under spatial trend, some directional variogram, and the omnidirectional, may be non-
stationary . Their analysis will show us the direction or directions in which some type of trend
is manifested. Since the process mean is not constant, we can not apply the ordinary kriging
procedure. In this case, we can follow two different ways. First, to eliminate the trend by
obtaining a stationary process. Second, to integrate the trend in the model and use it to make
spatial predictions. We will call these procedures “kriging on the residuals” and “iterated
universal kriging”, respectively.

In the first case, there are some procedures to estimate the trend. It is worth pointing out
the median-polish procedure and other estimation methods related to polynomic regression and
generalized additive models.

Median-polish: This is a non-parametric procedure for estimation of the trend, that is to
say, it does not impose any restriction on its functional form. Starting from the spatial process

when its mean m(A) is unknown and it is not constant, it can be estimated supposing that it can
be broken down as the sum of its directional components. In the most usual case, i.e. in ú2, this
is expressed as:
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where a is the global effect, c(A) is the column effect, r(A) is the row effect and the points {ui:
i=1,...,n}  are located on the nodes of a mesh or grid of dimension pxq (p rows and q columns):

 in such a way that   and 

The row effect can be estimated through an analogous procedure by using medians
instead of means. The estimated principal effects, under very general conditions, minimize the
norm L1 (absolute value norm)

and the procedure converges.

When calculating spatial trend in locations without observations, we will not have any
explicit formulation to calculate it, as we have not imposed any restriction on the functional form
of the trend.In this case, we can estimate interpolation planes for each four points of the median-
polish trend or use other more sophisticated procedure called “Akima method” or  “spline
surfaces method”. This method is valid for regular grids as well as for regularly distributed data
in the plane. It consists of fitting polynomic surfaces of small degree, the minimum possible, to
the regions obtained through the triangulation of Delaunnais, so that the surfaces will be
differentiable on edges (obtained from surfaces intersection). Thus, we get a soft surface from
composition of all the small surfaces, called “spline surfaces”. Since the form of each spline
surface is known, we can interpolate the trend in every point of the spatial domain. Extrapolation
by any one of the previous methods can not be done unless we make some hypothesis about the
behaviour of the surface at domain limit.

Generalized additive models (G.A.M.): When the data are not regularly distributed on
the plane, there are other procedures to estimate the trend.

These methods are: polinomic regression, generalized least squares and local regression
surfaces, that are particular cases of “generalized additive models”. In all of  them it is
hypothesized that trend follows the form:

where  fi can be any type of function, for example polynomic functions, trigonometrical
functions, etc. The main problem of this method is that it relies on the hypothesis of
independence of the data, therefore the results must be handled with care.

Using global trend surfaces implies the following difficulties: the variability of
extrapolated values of the trend depend critically on how far we have moved from the
observational domain.  One solution consists of fitting a polynomic surface in each point using
only the nearby points. This is known as “local regression”, obtained, generally,  by weighted
least squares, giving more weight to the nearest points.



8

Ordinary Kriging on the residuals.

Once we have estimated the trend, we can express the spatial process as

where the residuals {R(ui): i=1,...,n} are a set of spatial data devoid of trend, and they are ready
to have ordinary kriging procedure applied to them.

We can fit a theoretical variogram with these residuals, thus applying ordinary kriging
equations we get:

This estimation approximates the unknown real errors {,(ui): i=1,...,n}. We can obtain an
estimation of the trend  using any one of the previous procedures. Thus, now for every
point on the plane we have two estimations. One for the trend and the other for the residual

. Combining both, we get the kriging predictor based on the residuals,   y(u0), defined as
follows:

This estimator  is called “median-polish kriging” in the event that we have estimated
trend  through median-polish.

This predictor is also an exact interpolator, i.e.,  

The variability of this estimator  comes only from  the ordinary kriging predictor
applied to the residuals. This variability is measured by the variance of the ordinary kriging
estimator and we denote it by .

Iterated Universal Kriging.

The second method consists of applying universal kriging, that estimates both the trend,
generally polynomic, and the process in the point or points. The main problem of this method is
the impossibility of correctly estimating variogram unless we have eliminated trend  previously.
And we can not estimate trend by usual procedures if the data are correlated. One solution is to
apply universal kriging iteratively following the next algorithm:

Step 1. Apply universal kriging using empirical variogram of the original data as first
approximation of the theoretical variogram.

Step 2. Once trend has been eliminated using estimations from step 1, we obtain the
residuals.

Step 3. Compute empirical variogram using the residuals (step 2) and estimate the
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theoretical variogram.

Step 4. Apply universal kriging using former estimation of theoretical variogram as input.

Step 5. Return to step 2 and repeat the process until the results do not vary substantially.

As this algorithm concerns only the estimation of  theoretical variogram, the variance of
the error of estimation will be the one given by the universal kriging method.

There are no general results for comparing the precision of the two previous procedures.
In  cases in which they have been applied (Cressie, 1993) the obtained predictors have been
almost identical, the mean of squared error being smaller in median-polish-kriging. The same
conclusion has been reached in the application to the case of the real-estate market in the case
of Albacete city.

4.- MODELIZATION OF HOUSING PRICE IN  ALBACETE.

The importance of the housing sector in the Spanish Economy, and particularly in
Castilla-La Mancha, comes from its share in the GDP (more than 5 %). The economic and
physical qualities of Albacete city make it a suitable case to apply a spatial study. It is worth
pointing out the geometric form of the city, practically circular, and the absence of relevant
topographical unevenness that allow us to consider the city as an ideal environment for the spread
of the spatial dependency equally in all directions (isotropy).

The empirical study starts with the description of the sampling. Then, the results obtained
from four different kriging methods are compared and, finally, they are analysed.

SAMPLING AND TREATMENT OF THE INFORMATION.

Available information was obtained by a sampling procedure over the data supplied by
Real-Estate Agencies, due to the lack of official information about housing prices related to the
spatial aspect. The sample contains very rich information covering a wide range which includes
houses of every type from the point of view of: age, quality, surface, and so forth. In other words,
the sample representativeness is in accordance with the housing-market in Albacete city in 1997.

The initial data base had 505 records with the following fields:

- street and number,
- zone, 
- age, expressed in years,
- surface, in square meters,
- quality, different levels according to the Agencies,
- parking facilities, if it possesses it or not, and
- total price of sale, in current pesetas.

Once the information has been collected, the next sequence was followed:

a) Each house was exactly located on the city plan of Albacete.
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b) The city expansion belt was delimited for predicting in the expansion zones of the city
contemplated in the future P.G.O.U. (General Town Planning).

c) Age was recodified in a new ordinal variable (cod.age) with the following modalities:

- new, for the finished and delivered houses in the last year,
- from 1 to 5, for the houses that were delivered more than a year ago and less than five,
- from 6 to 10, for those six to ten years old,
- from 11 to 20, for those eleven to twenty years old, and
- more than 20.

d) Surface recoding. Surface variable was recodified  in an ordinal variable, called
“cod.surf”, with five categories:

- very small, surface below 50 m2,
- small, 50 - 70 m2,
- medium, 70 - 90 m2,
- large, 90 - 125 m2, and
- very large, more than 125 m2.

e) Treatment of the quality. We have worked with  five categories of quality: intermediate
level “good” corresponding to the standard quality; two categories above it, “very good”,
comparable to the new houses of first quality, and “luxury”; and two lower categories, “bad” for
old houses built with bad material and in very bad habitability and conservation conditions, and
“substandard” for new or semi-new houses that were built below the standards of quality of the
houses classified as good or houses of the previous type that have been renovated and improved.

f) Determination of square meter price, as the ratio between the total housing price  and
its useful surface.

CONSTRUCTION OF THE EQUIVALENT HOUSING CLASS.

When we select the data set which will be used in the analysis, we have two options. The
first consists of filtering the available information, that is to say, to consider only those cases that
fulfil some given characteristics relating to age, surface and quality (Chica Olmo (1994)). In
doing so, the data base used for the spatial modelling will be the most homogeneous possible.
The principal disadvantage of this alternative is that much information is lost, which is not
advisable if the size of the sample is not excessively large, as in our case.

The other solution which is adopted in this investigation, consists of referring all the
house prices to a sole support in order to use all the available information in  the sample. For this
purpose, we have accomplished an analysis of the variance of the price by square meter using as
factors the surface, the age, the possession or not of parking facilities and the quality of the
housing. In this way we obtain the corresponding effects at different levels of the previous factors
referenced to a housing pattern. Eliminating these effects from the data, we obtained their
reduction to an “equivalent housing class”.

Analysis of variance. The aim here is to estimate the effects on housing sale price in
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Albacete city of age, surface, quality and parking possesion. Therefore, we will be able to
eliminate them reducing data  to  homogeneous support. We used a multiplicative model
assuming that the effect of any one of the previous factors is proportional to housing price. The
model used was:

log(price) ~ cod.surf + cod.age + quality + parking + error

Once the effects have been estimated and the appropriate transformations applied, we will
obtain the following:

where k is the mean price of the square meter filtered of all effects and the remaining terms are
the error and the antilogarithms of the estimated effects expressed as indices.

The previous  model does  not include different order interactions among the factors
because the estimated effects were not, significantly, different from zero.  

The following table shows the estimated effects for all factors as well as their
antilogarithms.The “reference price”, to which all the effects refer, is 72.078 ptas. and
corresponds to a very small house (up to 50 m2) more than twenty years old, of bad quality and
without parking.

Factors Levels Estimated efects exp(efects)

Constant 11.18551   72078.1

Surface

very small 0 1

small -0.07724   0.92567

medium -0.16508   0.84782

big -0.15951   0.85256

very big -0.2312   0.79358

Age

more than 20 0 1

from 11 to 20  0.12353   1.13148

from 6 to 10  0.13373   1.14309

from 1 to 5  0.29364   1.3413

new  0.28124   1.32477

Quality

bad 0 1

substandard  0.30054   1.35055

good (standard)  0.46133   1.58618

very good  0.67931   1.97252

luxury  0.83255   2.29918

Parking
no 0 1

yes  0.15157   1.16365
Table 1: Housing price factors  (analysis of variance). 
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From the table above we observe:

a) The effect of the surface on the price decreases the size of  housing increases, being
for a very large house 79,36% of the price corresponding to a very small house.

b) The price of housing decreases as  the age of housing  increases. The maximum price
is reached in the group of  houses from 1 to 5 years old with a very similar effect in the group of
newest ones.

c) The quality is the most important factor. It explains 58,6% of the difference of prices
in the poor quality group of houses. For the luxury houses group, differences in prices due to
different qualities reach 130%. Surprisingly, this factor is omitted by Ministry and Valuation
Companies when they do valuations.  

d) The scarcity of public parking in some city areas means that, with the same
characteristic of surface, age and quality, a house with parking space is 16,4% more expensive,
on average, than the one which does not possess it.

Once the previous effects have been estimated, they are eliminated from the observations
transforming them into a house of reference, that is, a very small house of more than 20 years,
poor quality and without parking space. We call it “equivalent house”.

Only 355 records of initial data had information about quality. In order to use all the
records for the spatial analysis we estimated the quality for the remaining cases through a
classification tree (Breiman et al.(1984), Clark & Pregibon (1992), Venables & Ripley (1996)),
a learning method used in expert systems. The predictors are location, age and surface:

Classification tree:
tree(formula = quality ~ x + y + cod.age + cod.surf, data = datos,
na.action = na.omit, mincut = 5, minsize = 10, mindev = 0.01)

Number of terminal nodes: 41
Residual mean deviance: 0.8392 = 234.1/279
Misclassification error rate: 0.1812

The proportion of misclassified cases is 18,12%, which seems acceptable.

Equivalent Information. Only 30 houses were rejected after the location process and
they were removed from the analysis, 475 valid cases remaining. All the efects were filtered in
this group.  Thus we obtained an estimation of the logarithm of  price and the residue of each
case. By manipulating them conveniently, we have:

where we know the reference price (the constant in the multiplicative model: 72.078 ptas/m2) and
the residuals. The class of equivalent houses is obtained by multiplying the base price times the
residuals:
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Then,  the equivalent houses data base is ready for applying kriging techniques.

KRIGING ON HOUSING PRICE IN ALBACETE.

Our objective is to model the spatial behaviour of  housing price in Albacete city. First,
we will carry out point kriging on the observations irregularly distributed on the plane.
Alternatively we also apply block kriging, where observations are taken as the mean price
calculated in different areas or blocks. Generally, these areas have an irregular form but we have
used squares from a regular grid. In particular, we will apply the following four methods:
universal kriging and ordinary kriging on the residuals of a generalized additive model (Hastie
& Tibshirany (1990), Venables & Ripley (1996) ) for the point estimation, and universal kriging
and median-polish kriging (Cressie (1993)) for the block estimation. The usual procedure can be
summarized as follows:

1) Estimate and eliminate the trend if the procedure requires it.
2) Estimate the empirical variogram, removing anisotropies, if they exist, from the
original data or from the residuals with respect to the trend.
3) Fit a theoretical variogram model from the empirical variogram.
4) Estimate the corresponding kriging model (ordinary or universal).
5) Predict the price and calculate the prediction error over 1330 nodes of a regular grid
which covers the city.
6) Analyse by cross validation the goodness-of-fit for each model.

MODEL SELECTION AND RESULTS.

In this section, we will compare briefly the relative advantages of the four methods by
taking as criteria the means of the prediction results, cross validation and measure errors.

A) Selection of modelling and prediction method of the housing price. With regard
to the spatial dependency structure of housing prices, the four procedures give us similar results.
This structure is spherical, but show different range, sill and nugget effect. Thus, the price in a
particular location depends, mainly, on the prices of the nearest houses. This influence decreases
as the distance increases and vanishes when the distance range is reached. This kind of spatial
dependence is called “neighborhood effect”.

The four methods show similar price trends in Albacete. The highest prices are reached
in the downtown area (Paseo de la Libertad, Altozano, Catedral,  Plaza de la Mancha, Calle
Ancha,...) decreasing gradually from there to peripheral areas (Barriada de la Seiscientas,
Carretera de Murcia, Alto de los Molinos, Hoya de San Ginés, Mortero de Pertusa, Carretera de
Jaén, Barrio de San Pablo, Campollano, end of Paseo de La Cuba,...). A quadratic function was
used to model the structure of the trend, previously explained, when applying universal kriging
methods (for point and block data).The same form (quadratic function) is revealed for trend by
kriging methods that eliminate this component, modelling it through a local regression surface
and median polish when we use point and block kriging respectively. 

When we consider the prediction error, the apparent similarity between methods
disappears (table 2). When comparing prediction error from different methods, we must bear in
mind that  g(u), can be broken down into the sum of two  second order stationary and
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incorrelated error processes,

where eM(u) is a measure error process (nugget effect) and e(u) is the prediction error process due
exclusively to the model. Furthermore, the process covariance function verifies:

for whatever u and w locations. According to this breakdown and using all of the above-
mentioned methods, we have obtained both the prediction of square meter price for equivalent
housing class and the error (total and free of measure error).

Total prediction error (includes measure error)

Universal Point Kriging
Minimum   Q1     Median  Mean      Q3    Maximum  
 10940    14760   16180  16390   18090  19250

G.A.M. Kriging Minimum   Q1     Median  Mean      Q3    Maximum
 11030    14460   15350  15280   16170  16230 

Universal Block Kriging Minimum   Q1     Median  Mean      Q3    Maximum 
   8315    12560   13310  14030   15010  22730 

Median-Polish Kriging Minimum   Q1     Median  Mean      Q3    Maximum 
  6073     10290   11350  11270   12310  12320

Table 2: Prediction error for every estimation method.

The estimation of the measure error variance is different for each method and is equal to
the nugget effect corresponding to each one of the fitted theoretical models of variogram. These
effects, (expressed in 1010 pesetas) are:

Estimation of measure error
variance (nugget effect)

Universal Point Kriging 0.016075

G.A.M. Kriging 0.016896

Universal Block Kriging 0.012798

Median-Polish Kriging 0.00638
Table 3: Nugget effect estimation.

We see that all of them are very similar except from the median-polish kriging model.
Eliminating these effects, we can obtain the prediction errors due to the estimation method.A
summary of the statistics is shown in table 4.
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Prediction error due to the estimation method
(measure error free)

Universal Point Kriging Minimum   Q1     Median  Mean      Q3    Maximum 
  5475      7572   10070   10170   12900   14490

G.A.M. Kriging Minimum   Q1     Median  Mean      Q3    Maximum 
  4740      6338     8164     7922    9618     9726

Universal Block Kriging Minimum   Q1     Median  Mean      Q3    Maximum
  4945      5450     7017     7981    9863   19720

Median-Polish Kriging Minimum   Q1     Median  Mean      Q3    Maximum 
  5411      6494     8069     7906     9370    9387 

Table 4: Prediction error  (measure error free) for every estimation method.

Comparing the four models through cross validation statistics (Table 5), or any of the
previous prediction errors,  we can conclude that:

- In point kriging as well as in block kriging, the best result is provided when we
previously have eliminated the trend.

- If we compare the two models for deciding whether or not to group the observations in
blocks, we choose block methods because they provide better MQE and AMQE statistics.1  

- Comparing kriging on residuals from generalized additive model with median-polish
kriging, the errors due exclusively to the model (table 4) are practically equal for both models,
but the cross-validation statistics  favour the latter. The only disadvantage of this method is that
its empirical residuals tails are not well fitted to the normality hypothesis.

From this discussion, we conclude that we prefer blocks as support to take the
observations, designing  a regular grid that covers the city  and averaging the observations in such
grid blocks. At the same time, we choose median-polish kriging to predict the square meter price
housing of Albacete because this method provides the best results in terms of cross validation
and total error of prediction.
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Comparative table of cross-validation statistics 
for all estimation methods.

Method ME   MQE AMQE TME

Universal Point Kriging -0.00027 0.02117 0.999462 0.146492

G.A.M. Kriging -0.0001 0.02092 1.010452 0.143707

Universal Block Kriging -0.00074 0.01507 0.957974 0.12871

Median-Polish Kriging 4.21874e-13 0.01364 0.951739 0.122727

Table 5: Cross-validation statistics.  

B) Results. The results obtained by this method are graphically shown below. The
estimated values and the estimated errors for the four methods can be seen in appendix.

Figure1 shows a non-stationary variogram with a “cyclical in space” structure, similar to
a quadratic trend. If we eliminate the trend, estimated by median-polish method, we can obtain
the experimental variogram of the median-polish residuals (Figure 2). This variogram is
stationary and follows a spherical variogram model with range 500 m., sill 0.009 and nugget
effect 0.007. If we take these values as initial parameters to fit the spheric model by non-linear
least squares (Cressie, 1985),  the fitted values of the variogram parameters are: range 500.42 m.,
sill  0.008594 and nugget effect 0,006377. Figure 3 shows the median-polish experimental
residuals and the initial and fitted theoretical variograms:
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Figure 1: Omnidirectional variogram of housing prices.
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Figure 2: Omnidirectional variogram of median-polish
residuals.

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Distance in kilometers

G
am

m
a

Fitting a spherical variogram model on the median-polish residuals. 
 (range=0.500, sill=0.008594, nugget=0.006377).

Experimental variogram..
Initial values: 0.5, 0.008, 0.007.
nls fit: 0.500, 0.008594, 0.006377.

Figure 3: Fitting a spherical variogram model on the median-
polish residuals.
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Figure 4: Contour plot of the median-polish trend.

Once we have estimated the theoretical variogram model, we can apply median-polish
kriging (Cressie, 1993). The housing price prediction will be obtained as the sum of trend,
estimated by Akima method (Akima, 1978), from the nodes in which the median-polish trend has
been obtained, and the ordinary kriging prediction of the residuals, in the 1330 nodes of a regular
grid whose squares have 100m. x 100m. Figures 4 to 11 show the aforementioned results.
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Prediction of the housing price trend
               using median-polish.

Figure 5: Median-polish trend surface of the housing price.
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Figure 6: Contour plot of the median-polish residuals. Ordinary kriging prediction.
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Prediction of the median-polish residuals
              using ordinary kriging.

Figure 7: Surface of the median-polish residual. Prediction using ordinary kriging.
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Figure 8: Isoprice lines predicted using median-polish kriging.
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Prediction of the housing price in Albacete
             using median-polish-kriging.

Figure 9: Surface of the housing prices predicted using median-polish kriging.
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Figure 10: Contour plot of the median-polish-kriging errors.
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Prediction error of the housing price in Albacete
                 using median-polish kriging.

Figure 11: Surface of the median-polish-kriging errors.
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Figure 12: Variogram of the experimental errors from median-
polish kriging (cross-validation).

Finally we analyse the goodness-of-fit of median-polish kriging model. In order to do
that, we summarize its position and cross-validation statistics in the following table. 

Observed values Predicted values

  Minimum              0,35100 
  Q1                          0,61700
  Median                  0,67930
  Mean                     0,70060
  Q3                           0,78080
  Maximum              1,19900

  Minimum             0,42830  
  Q1                         0,63890 
  Median                 0,70190 
  Mean                    0,70060  
  Q3                          0,75820 
  Maximum             0,87790

Table 6: Statistics of the observed and predicted values (cross-validation).

Cross-validation statistics from the ordinary kriging on
median-polish residuals.

ME =   4,21874e-013 AMQE = 0,9517394

MQE = 0,013643235 TME  =    0,1227271

Table 7: Cross-validation statistics from the median-polish kriging.

The following figure show the omnidirectional variogram of experimental errors. We can
observe that there is no kind of spatial dependence among residuals. So we conclude that the
theoretical model has successfully explained the spatial dependence structure.
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