

Diversification Gains, Sector Exposure and Systematic Risk in International Public Real Estate Markets

Marielle Chuangdumrongsomsuk and Colin Lizieri Cambridge Real Estate Research Centre University of Cambridge

EPRA Panel on Listed Real Estate European Real Estate Society, Istanbul, 2015

Background and Motivation

- Part of Wider Project on Risk and Investment Strategies for International Real Estate Securities
 - Aim to study interaction of international real estate and financial markets in context of globalisation and market integration
 - MC's doctoral thesis and joint papers
 - Updates paper originally presented in Vienna
- Context of Growth in Investment Strategies Using Global RE Securities in Portfolio Allocations
 - As part of international real estate securities strategy
 - To augment (domestic) private real estate strategy
- Context of Literature on Equity/RE Market Integration
- > RQ: What is Optimal Global RE Investment Strategy?
- RQ: Do National Index Effects Apply Across Different Sectors and with Specific City Exposure?

UNIVERSITY OF CAMBRIDGE

Prior Work (Brief Outline)

Substantial Literature on Benefits of RE Diversification

- Much of it in MPT / Correlation / ICAPM framework
- Typically at National (index) level
- Equity Market Literature on Integration and Balance of Country vs. Industry Factors
 - e.g. Ang, Baca et al., Bekaert and co-workers, Cavaglia et al., Eun & Lee, Forbes & Rigobon, Gagnon & Karolyi, Goetzmann & Karolyi, Van Dijk & Keizer etc. etc.

Real Estate Literature on Long-Run Integration

- Gerlach et al., Kleiman et al., Liow and co-workers, Schindler, Wilson & co-workers, Yunnus etc. etc.
- Gallo & Zhang (2010), Gallo et al. (2013) division into cointegrated and independent portfolios.

UNIVERSITY OF CAMBRIDGE

Set Up

- Prior Research Typically at Index Level
- However, Investors May Have Sector Mandate or Apply Filters that Tilt Portfolio Holdings
- Examine Cointegration of Markets at National and Regional Level
- Identify Risk Exposure and Risk Drivers ...
- > Then Disaggregate Firms by Sector (and City):
 - Is Same Pattern of Integration Observed?
 - Do Risk Drivers and Diversification Benefits Differ?
- What Are Implications for Investment Strategy?

Data ...

RE Securities Data Monthly 1995-2013

- GPR data, 353 firms and 15 countries
- Total returns including dividends
- Deflated using US CPI
- Augmented by SNL, EPRA
- Aggregated using value weighting
- Identify Specialist Firms
 - Sector specialists >50% in individual sector
 - Firms with high exposure to international financial gateway cities (GFCI ranked cities)
- > This Paper US\$ Basis
 - Results Hold in Local Currency
- Economic and Financial Control Variables
 - RP, Term Structure, Carhart factors, inflation, industrial production, oil price, institutional trading flows

UNIVERSITY OF CAMBRIDGE

Methods – 1 (Antecedent Papers)

> Initial Processing:

- Test global, regional, national indices using Heston & Rouwenhorst approach
- Multi-factor approach, decompose influences of market, sector, national, city drivers
- Factor model using WLS and focus on relative returns, orthogonalise factors
- Integration: Test for Cointegration, Breaks
 - DF, ADF, PP, KPSS, Zivot & Andrews for stationarity and allow for structural break(s)
 - Analyse multivariate cointegration, modified Johansen
 - Disaggregate to region, sector / city exposure and test differences

Methods – 2 (This Paper)

- Define integrated and independent portfolios
- Compare portfolio performance using Sharpe ratios;
- > Examine risk sensitivity using a Carhart four factor model;

 $R_{pt} = \alpha_i + \beta_{p1}R_{mt} + \gamma_{p2}GSMB_{2p} + \lambda_{p3}GMOM_{3p} + \zeta_{p4}GHML_{4p} + \varepsilon_t, \qquad (7.3)$

- Decompose risk using Fama-Macbeth 2-stage process, rolling windows, expanding windows
- Canonical approach to identify independent components, test against financial and economic variables

 $\varphi_{it} = \gamma_{i0} + \gamma_{i1}RP_t + \gamma_{i2}TS_t + \gamma_{i3}CPI_t + \gamma_{i4}IP_t + \gamma_{i5}OIL_t + \gamma_{i6}FLOW_t + v_i, \quad (7.7)$

- > Repeat for disaggregated sector / gateway city indices
- > Robustness checks (different time periods, local currency, ex-US, out of sample tests).

Results – 1: Antecedent Research

- Initial results show strong common factors in returns but these vary by region, country and sector
- Integration results at Index level
 - Evidence of <u>regional</u> cointegration
 - Regionally independent have global drivers (US, Canada, Japan, HK, Finland, Belgium)
 - Regional diversification effects exist
- Disaggregated sector/city integration results
 - Major sectors: integration is global not regional
 - Financial gateway exposure: integration is global
 - Substantial differences in performance

Results – 2: Index Level Performance

Sharpe Ratio:

• Regionally Cointegrated Group superior (0.119 to 0.040, z 4.223)

> 4-Factor Model

- Global/Indep group more sensitive to market (β 1.15 to 0.77)
- Regionally integrated group larger α in 2nd half of data

Fama-Macbeth

- Global/indep higher sensitivity to market, negative sensitivity to value factor; sensitivities differ over groups
- Over time, correl global integration and risk increases

Canonical Factor Model

• Global/indep has more sensitivity to RP, TS, higher γ s generally

In general: lower regional integration brings greater portfolio risk and less diversification benefit

Results – 3: Sector and City Level

> Key Insight – Results Differ Substantially!

- Country mix varies, sensitivities vary
- Integration here is global not regional

> Offices

- Large globally integrated group (81% by value)
- Clear evidence of strong global drivers
- Global lower Sharpe and higher betas
- F-M results indep higher total risk but lower systematic risk

Retail

- More even split global (52%) and independent
- Global Sharpe higher but more exposed to global risk factors
- Global sensitive to RP, TS, fund flows and oil prices
- Cointegration reduces diversification but risk-return better?

Financial Gateway Cities

- Somewhat similar to offices, as expected
- Global very strong risk sensitivity (high betas, R²)
- Global portfolio underperforms independent, sensitivity to shocks

Discussion and Preliminary Conclusions

- Paper Takes Long Run Risk Sensitivity Approach to Understanding Performance / Diversification Benefits
- At Index Level, Diversification Benefits Linked to Regional Integration
- > But Do Investors "Buy the Index"?
 - Liquidity / large cap stock preference
 - Sector specialists and sector preferences
 - City focus, mirroring underlying private market?
- Sector and City Results Differ Substantially
 - Global not regional integration
 - Global integration, weaker performance, risk sensitivity
 - Different mix of integrated countries across sectors
- Points to Need (and Opportunity) to Fine-Tune Stock Selection in International Investment Strategies

Diversification Gains, Sector Exposure and Systematic Risk in International Public Real Estate Markets

Marielle Chuangdumrongsomsuk and Colin Lizieri Cambridge Real Estate Research Centre University of Cambridge

EPRA Panel on Listed Real Estate European Real Estate Society, Istanbul, 2015

Table 7.1: Property Portfolio Correlation Analysis, Aggregate Indices

	REGINDE vs.	REGINDE vs.	REGCOIN vs.
	REGCOIN	Benchmark	Benchmark
Contemporaneous	0.341 ^a	0.729 ^a	0.436 ^a
Rolling 60-month Window	0.296 ^a	0.559 ^a	0.427^{a}

Table 7.3: Summary of Property Portfolio Performance, Aggregate Indices

					Z-stat		
				Z-	(REGINDE		Portfolio
		Standard	Sharpe	stat _{(GPR}	VS.	Portfolio	Market
Portfolio	Return	Deviation	ratio	index)	REGCOIN)	Correlation	Weight
REGINDE	0.552%	8.002%	0.040	1.280	-	0.881	68.676%
REGCOIN	1.277%	8.795%	0.119	4.780 ^b	4.230 ^b	0.530	31.324%
GPR Global Index	0.603%	4.760%	0.078	-	-	-	100.000%
One-month T-bill	0.232%	0.183%	-	-	-	-	-

	α _p	$\alpha_{p}(-stat)$	β_{p1}	$\beta_{p1}(-stat)$	γ_{p2}	$\gamma_{p2}(-stat)$	λ_{p3}	λ_{p3} (-stat)	ζ_{p4}	$\zeta_{p4}(-stat)$	
Panel A: Four-factor performance model											
REGINDE	0.003	(0.810)	1.151ª	(9.010)	-0.337°	-(1.930)	-0.245	-(1.560)	-0.011	-(0.100)	0.545
REGCOIN	0.006	(1.030)	0.772 ^a	(7.290)	0.045	(0.190)	0.404°	(1.840)	0.063	(0.570)	0.201
Panel B: Inte	ertempor	al four-facto	r performa	nce model (()1/1995-03	5/2004)					
									-		
REGINDE	0.006	(1.480)	1.383 ^a	(8.820)	-0.224°	-(1.780)	-0.033	-(0.270)	0.009	-(0.130)	0.279
REGCOIN	0.012	(1.640)	0.671 ^b	(2.520)	0.298	(0.950)	0.409°	(1.750)	0.007	(0.040)	0.152
Panel C: Intertemporal four-factor performance model (06/2004-10/2013)											
									_		
REGINDE	0.002	(0.470)	1.327ª	(8.160)	-0.667°	-(1.670)	-0.658	-(1.520)	0.080	-(0.350)	0.666
REGCOIN	0.016 ^c	(1.780)	0.847 ^a	(7.370)	-0.236	-(0.530)	0.410	(0.650)	0.086	(0.530)	0.257

Table 7.4: Four-Factor Property Portfolio Performance, Aggregate Indices

 \mathbb{R}^2

Coefficient	REGINDE	REGINDE	REGCOIN	REGCOIN	H_{0}	t-stat	
	Mean _{REGINDE}	SD _{REGINDE}	Mean _{REGCOIN}	SD _{REGCOIN}			
Four-factor perform	Four-factor performance model (Rolling Window)						
Intercept	0.004	0.003	0.007	0.011	$A_{REGINDE} = \alpha_{REGCOIN}$	3.197 ^a	
R _{mt}	1.362	0.123	0.528	0.152	$B_{REGINDE} = \beta_{REGCOIN}$	18.949 ^a	
GSMB	-0.331	0.213	-0.171	0.428	$\Gamma_{\text{REGINDE}} = \gamma_{\text{REGCOIN}}$	0.812 ^a	
GHML	-0.489	0.494	0.540	0.685	$\Lambda_{\text{REGINDE}} = \lambda_{\text{REGCOIN}}$	17.659 ^a	
GMOM	-0.250	0.171	0.036	0.282	$Z_{\text{REGINDE}} = \zeta_{\text{REGCOIN}}$	12.347 ^a	
MSE	0.002	0.015	0.010	0.020	MSE _{REGINDE} =MSE _{REGCOIN}	19.741 ^a	
Four-factor perform	mance model (Exp	anding Window)					
Intercept	0.003	0.001	0.016	0.007	$A_{REGINDE} = \alpha_{REGCOIN}$	22.819 ^a	
R _{mt}	1.361	0.048	0.649	0.119	$B_{REGINDE} = \beta_{REGCOIN}$	16.828 ^a	
GSMB	-0.122	0.052	0.066	0.167	$\Gamma_{\text{REGINDE}} = \gamma_{\text{REGCOIN}}$	14.758 ^a	
GHML	-0.172	0.182	0.324	0.143	$\Lambda_{\text{REGINDE}} = \lambda_{\text{REGCOIN}}$	44.425 ^a	
GMOM	-0.258	0.123	0.041	0.140	$Z_{\text{REGINDE}} = \zeta_{\text{REGCOIN}}$	72.240 ^a	
MSE	0.002	0.004	0.009	0.007	MSE _{REGINDE} =MSE _{REGCOIN}	61.376 ^a	

Table 7.5: Long-term Property Portfolio Risk Decomposition, Aggregate Indices

Table 7.6: Property Portfolio Systematic Risk Factors, Aggregate Indices

	a	γ _{i1} RP	$\gamma_{i2}TS$	γ _{i3} CPI	$\gamma_{i4}IP$	γ _{i5} OIL	γ _{i6} FLOW	R ²
REGINDE Variate								
Coefficient	5.990	29.570 ^b	29.290 ^b	-61.410ª	-13.960	-2.270	-93.260ª	0.141
(t-stat)	(0.230)	(2.250)	(2.530)	-(3.350)	-(0.250)	-(0.570)	-(6.060)	
REGCOIN Variate								
Coefficient	11.150ª	1.747	0.391	-41.160	-16.970	-0.930	-7.770°	0.049
(t-stat)	(10.630)	(0.630)	(0.110)	-(1.010)	-(1.550)	-(0.890)	-(1.890)	
GPR Benchmark								
Coefficient	0.007	0.123°	0.026 ^b	-0.425 ^b	-0.579	-0.104	-0.310 ^c	0.093
(t-stat)	(1.380)	(1.750)	(2.120)	-(2.270)	-(0.830)	-(1.360)	-(1.870)	

 \mathbb{R}^2