Longevity of buildings as an economic KPI

Peter de Jong
Faculty of Architecture and the Built Environment, Delft University of Technology, Delft, the Netherlands

European Real Estate Society 22nd Annual Conference
24-27 June 2015 – Istanbul, Turkey
Introduction

• Due to simplification 50 years is often assumed as lifetime of buildings.

• Illustrations of ERES venues to show the delusion.

• Threat of:
 • self-fulfilling prophecy,
 • missing opportunities.

• Real estate vs building industry.

• Building industry is too focussed on new buildings.

• Real estate is driven too far away of buildings due to indirect investment (liquidity).

• Longevity is a KPI for buildings.

• How are other fields looking at longevity?
<table>
<thead>
<tr>
<th>Human development group or region</th>
<th>Human Development Index value</th>
<th>Life expectancy at birth (years)</th>
<th>Mean years of schooling (years)</th>
<th>Expected years of schooling (years)</th>
<th>Gross national income per capita (2011 PPP$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high human development</td>
<td>0.885</td>
<td>0.890</td>
<td>79.7</td>
<td>80.2</td>
<td>11.7</td>
</tr>
<tr>
<td>High human development</td>
<td>0.723</td>
<td>0.735</td>
<td>73.9</td>
<td>74.5</td>
<td>8.1</td>
</tr>
<tr>
<td>Medium human development</td>
<td>0.601</td>
<td>0.614</td>
<td>67.1</td>
<td>67.9</td>
<td>5.5</td>
</tr>
<tr>
<td>Low human development</td>
<td>0.479</td>
<td>0.493</td>
<td>58.2</td>
<td>59.4</td>
<td>4.1</td>
</tr>
<tr>
<td>Arab States</td>
<td>0.675</td>
<td>0.682</td>
<td>69.7</td>
<td>70.2</td>
<td>6.2</td>
</tr>
<tr>
<td>East Asia and the Pacific</td>
<td>0.688</td>
<td>0.703</td>
<td>73.5</td>
<td>74.0</td>
<td>7.4</td>
</tr>
<tr>
<td>Europe and Central Asia</td>
<td>0.726</td>
<td>0.738</td>
<td>70.7</td>
<td>71.3</td>
<td>9.6</td>
</tr>
<tr>
<td>Latin America and the Caribbean</td>
<td>0.734</td>
<td>0.740</td>
<td>74.2</td>
<td>74.9</td>
<td>7.9</td>
</tr>
<tr>
<td>South Asia</td>
<td>0.573</td>
<td>0.588</td>
<td>66.4</td>
<td>67.2</td>
<td>4.7</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>0.468</td>
<td>0.502</td>
<td>55.2</td>
<td>56.8</td>
<td>4.8</td>
</tr>
<tr>
<td>World</td>
<td>0.693</td>
<td>0.702</td>
<td>70.3</td>
<td>70.8</td>
<td>7.7</td>
</tr>
</tbody>
</table>

PPP is purchasing power parity.
Source: Human Development Report Office calculations
Human Development Index

- Ongoing debate on the relevance and the perceived insight, especially on the income indicator

- Relevance of longevity and education as indicator for human development is not disputed

- ERES is already doing its part for education and global sharing of knowledge

- With the venues ERES is showing the relevance of longevity.
Building industry economic performance

• The global construction market is vast accounting for approximately 13-15% of the GDP, estimated to about US $12 trillion by 2020 (Robinson & Symonds, 2015).

• Economic growth as a result of an increasing (cost of) building sector has been taken for granted but disagreed more recently (Dlamini, 2012; Lopes, Balsa, & Nunes, 2011).

• Construction activity follows economic growth
Bon curve

- A milestone in this discussion is the introduction of the Bon curve, the inverted U-shaped relationship between the share of construction as a percentage of GNP and the GNP per capita.
- The building industry adapts to repair and maintenance.
- Cost illustrates significance in employment creation, capital formation and spill over effects, but does not drive economic growth (Dlamini, 2012).
- The real estate sector should adapt as well: from strong focus on new built towards opportunities of redevelopment as a services sector.
Capital value

- From the real estate perspective, capital value is the preferred indicator.
- To address longevity, value over time reflects a life cycle approach.
- Multiple users, a sequential of economic and functional lifetimes, during the lifetime of a building.
- Definitions of units and elements
 - Rates and returns,
 - Repeated initial costs
 - Operational and maintenance costs
 - Expected lifetimes per category
Longevity

- Lack of acceptable methods
 - 50 years not realistic.
 - No data on complete life cycles.
- Demolition rate not realistic.
 - Life time tables lacking ‘death or recovery’.
- Statistical data is growing
 - European project Inspire
 - Key Registers Buildings
 - Only recent demolition
- Rationale for demolition
 - Sample 6000 tall buildings
 - Social demolition

<table>
<thead>
<tr>
<th>Reason</th>
<th>number</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended development</td>
<td>24</td>
<td>67%</td>
</tr>
<tr>
<td>Obsolete</td>
<td>4</td>
<td>11%</td>
</tr>
<tr>
<td>Act of terrorism</td>
<td>4</td>
<td>11%</td>
</tr>
<tr>
<td>Fire</td>
<td>2</td>
<td>6%</td>
</tr>
<tr>
<td>Infrastructural development</td>
<td>1</td>
<td>3%</td>
</tr>
<tr>
<td>Constructive failure</td>
<td>1</td>
<td>3%</td>
</tr>
</tbody>
</table>
Conclusion

• Looking at the future: how to realize a development index for real estate (and get a better perspective on the future).

• Longevity
 • Close cooperation with Inspire (local),
 • Add information on end-of-life – reasoning and cost
 • Classification
 • Advanced life time tables

• Education
 • Support ERES and other open research networks
Conclusion (continued)

• Value
 • Research on typologies for LCC (Hughes, Ive, de Jong and many others),
 • Use BREEAM in use for structural collection,
 • Longevity and demolition (end-of-life).
• Not a new research project but tuned collaboration.
• Real estate service: it is not about the 1-2 % addition per annum but about the 98-99 % buildings in stock (and many adjustments over time).

Contact: Peter de Jong
p.dejong@tudelft.nl
+31 6 39250953