# Capitalization of Energy Efficiency in the Housing Market

Erdal Aydin Tilburg University Dirk Brounen Tilburg University Nils Kok Maastricht University

June 25, 2015

ERES Conference

Capitalization of Energy Efficiency

June 25, 2015

## Motivation

- 40% of total energy consumption in EU is used by residential sector
- Reasons for underinvestment in energy efficiency in housing sector
  - Uncertainty about the financial returns of efficiency investments
    - $\blacksquare$  energy efficiency  $\rightarrow$  energy costs  $\rightarrow$  house price
  - Information asymmetry between seller and buyer

### Research Question

- What is the value of energy efficiency in the housing market?
- What is the role of information transparency (EPC) on the valuation of energy efficiency?

June 25, 2015

#### Literature

- Use of Energy Performance Certificates
  - Compare price of houses with different energy ratings
  - Brounen and Kok (2011) for the Netherlands, Hyland et al. (2013) for Ireland, Kahn and Kok (2014) for California
- Other Studies
  - Thorsnes and Bishop (2013) and Koirala et al. (2014) examine the capitalization of building standards

June 25, 2015

#### Literature

Limitations of the available literature

- Unobserved house characteristics that are correlated with measures of energy efficiency
- Multicollinearity: leading to insignificant and/or theoretically incorrect estimates for the coefficients of energy efficiency (Atkinson and Halvorsen, 1984).
- Measurement error
- Effect of information transparency on capitalization rate?
- Over-time variation in the capitalization rate?

June 25, 2015

## **Empirical Specification**

$$Log(Price_i) = \beta_0 + \beta_1 Log(E_i) + \beta_j X_i + \alpha_n + t_i + \varepsilon_i$$
 (1)

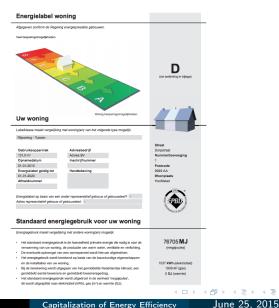
#### ■ *Log*(*Price<sub>i</sub>*): Log of house price

- $Log(E_i)$ : Log of energy performance indicator
- X<sub>i</sub>: Dwelling characteristics (household characteristics)
- $\alpha_n$ : neighborhood fixed-effects
- *t<sub>i</sub>*: transaction year fixed-effects

June 25, 2015

#### Data

- 30,036 single-family houses transacted with EPC
- 103,834 single-family houses transacted without EPC
- Variables
  - House Price
  - Energy Performance Index (houses with EPC)
  - House characteristics
  - Actual gas consumption (2004-2011)
  - Household characteristics (2004-2011)


#### Data

House characteristics

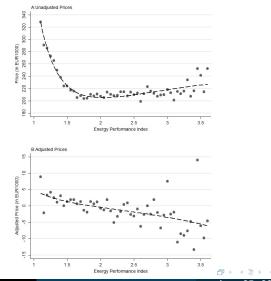
- neighborhood
- transaction year
- construction year
- dwelling size volume, and lot size
- dwelling type
- internal and external quality
- number of floors, number of rooms
- indoor parking place, type of parking place
- location of the dwelling relative to centre, road, park, water and forest.

Introduction Data Methodology & Results Implications

#### **Descriptive Statistics**



ERES Conference


Capitalization of Energy Efficiency

9 / 30

- 4 E b

### Descriptive Statistics

#### Transaction Prices and the Level of Energy Efficiency

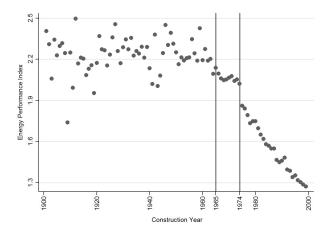


ERES Conference

Capitalization of Energy Efficiency

June 25, 2015 10 / 30

#### **OLS** Estimations

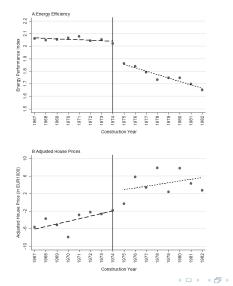

|                               | (1)       | (2)       | (3)       | (4)       |
|-------------------------------|-----------|-----------|-----------|-----------|
| Log(Energy Performance Index) | -0.235*** | -0.106*** | -0.052*** | -0.048*** |
|                               | [0.009]   | [0.004]   | [0.005]   | [0.005]   |
| Dwelling Characteristics      | No        | Yes       | Yes       | Yes       |
| Construction Year             | No        | No        | Yes       | Yes       |
| R <sup>2</sup>                | 0.106     | 0.833     | 0.841     | 0.843     |
| Number of observations        | 30,036    | 30,036    | 30,036    | 30,036    |

\*Construction year is included as a third order polynomial in specification (3). In specification (4), we included as dummy variables.

June 25, 2015

#### Instrumental Variable Approach

Efficiency Level of the Dwellings by Year of Construction




ERES Conference

June 25, 2015

## Instrumental Variable Approach: 1973-74 Oil Shock

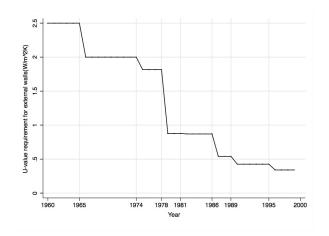
Energy Efficiency and Price of the Dwellings Constructed Before and After 1974



ERES Conference

Capitalization of Energy Efficiency

June 25, 2015


# Instrumental Variable Approach: 1973-74 Oil Shock

| Construction Period                           | (1967-1982)          | (1959-1990)          | (1950-1999)          |
|-----------------------------------------------|----------------------|----------------------|----------------------|
| Log(Energy Performance Index)                 | -0.227***<br>[0.067] | -0.185***<br>[0.065] | -0.198***<br>[0.048] |
| Dwelling Characteristics<br>Construction Year | Yes<br>Yes           | Yes<br>Yes           | Yes<br>Yes           |
| R <sup>2</sup>                                | 0.846                | 0.848                | 0.851                |
| First Stage                                   |                      |                      |                      |
| D <sup>1974</sup>                             | -0.080***<br>[0.007] | -0.071***<br>[0.005] | -0.060***<br>[0.004] |
| Number of observations                        | 12,513               | 20,270               | 25,311               |

June 25, 2015

### Instrumental Variable Approach: Building Codes

Over-time Variation in the Stringency of Building Codes



June 25, 2015

## Instrumental Variable Approach: Building Codes

| Log(Energy Performance Index)                 | -0.214***<br>[0.061] |
|-----------------------------------------------|----------------------|
| Dwelling Characteristics<br>Construction Year | Yes<br>Yes           |
| R <sup>2</sup>                                | 0.835                |
| First Stage Results                           |                      |
| U-value                                       | 0.071***<br>[0.005]  |
|                                               |                      |
| Number of observations                        | 30,036               |

June 25, 2015

 Compare the market value of energy efficiency for labeled and non-labeled dwellings

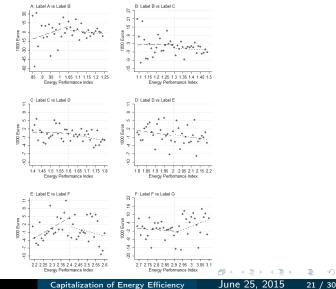
- Use actual gas consumption (per  $m^2$ ) as a proxy for the energy efficiency
- Control for household characteristics
  - number of household members
  - number of children (age<18)</p>
  - number of elderly (age>65)
  - number of females
  - household net income
- Use "evolution of building codes" as IV

#### **OLS** Estimations

|                                 | (1)                  | (2)                 | (3)                 | (4)                 | (5)                 |
|---------------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|
| $Log(Actual Gas Cons. per m^2)$ | -0.071***<br>[0.004] | 0.049***<br>[0.002] | 0.112***<br>[0.002] | 0.105***<br>[0.002] | 0.086***<br>[0.004] |
| Dwelling Characteristics        | No                   | Yes                 | Yes                 | Yes                 | Yes                 |
| Construction Year               | No                   | No                  | Yes                 | Yes                 | Yes                 |
| Household Characteristics       | No                   | No                  | No                  | Yes                 | Yes                 |
| R <sup>2</sup>                  | 0.010                | 0.755               | 0.773               | 0.793               | 0.852               |
| Number of observations          | 103,834              | 103,834             | 103,834             | 103,834             | 23,187              |

\*In column (5), we estimate the same model for the sample of certified dwellings.

June 25, 2015


∃ >

#### IV Estimation Results for Non-certified and Certified Dwellings

|                                                                            | (Non-certified)      | (Certified)         | (Certified)          |
|----------------------------------------------------------------------------|----------------------|---------------------|----------------------|
| Log(Actual Gas Cons. per $m^2$ )                                           | -0.239***<br>[0.040] | -0.195**<br>[0.079] |                      |
| Log(Energy Performance Index)                                              |                      |                     | -0.185***<br>[0.070] |
| Dwelling Characteristics<br>Construction Year<br>Household Characteristics | Yes<br>Yes<br>Yes    | Yes<br>Yes<br>Yes   | Yes<br>Yes<br>Yes    |
| R <sup>2</sup>                                                             | 0.740                | 0.818               | 0.844                |
| First Stage Results                                                        |                      |                     |                      |
| U-value                                                                    | 0.068***<br>[0.004]  | 0.065***<br>[0.008] | 0.069***<br>[0.006]  |
| Number of observations                                                     | 103,834              | 23,187              | 23,187               |

- Examine whether the energy label itself has an additional impact on the transaction price.
  - Apply a regression discontinuity (RD) approach based on the rule that is used to assign dwellings in energy efficiency classes

Transaction Price (adjusted) by Label Category and Energy Performance Index



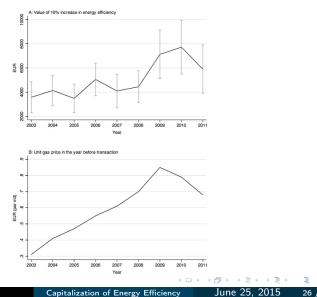
ERES Conference

Capitalization of Energy Efficiency

#### Regression Discontinuity Estimation Results for Label Effect

|                                      | (A-B)   | (B-C)   | (C-D)   | (D-E)   | (E-F)    | (F-G)   |
|--------------------------------------|---------|---------|---------|---------|----------|---------|
| $D^{L.label}=1$                      | -0.013  | -0.012  | -0.002  | -0.000  | - 0.007  | -0.015  |
|                                      | [0.027] | [0.008] | [0.006] | [0.008] | [0.010]  | [0.018] |
| Log(EPI)                             | 0.171   | -0.011  | -0.019  | -0.052  | 0.300**  | -0.055  |
|                                      | [0.280] | [0.070] | [0.054] | [0.081] | [0.129]  | [0.274] |
| Log(EPI)* <i>D<sup>L.label</sup></i> | -0.433  | -0.060  | -0.088  | -0.037  | -0.494** | 0.530   |
|                                      | [0.305] | [0.093] | [0.081] | [0.146] | [0.212]  | [0.451] |
| Dwelling Characteristics             | Yes     | Yes     | Yes     | Yes     | Yes      | Yes     |
| Construction Year                    | Yes     | Yes     | Yes     | Yes     | Yes      | Yes     |
| R <sup>2</sup>                       | 0.881   | 0.872   | 0.854   | 0.852   | 0.858    | 0.856   |
| Number of obs.                       | 1,461   | 6,879   | 11,009  | 6,899   | 4,606    | 2,146   |

June 25, 2015


- There is not a significant evidence suggesting a higher capitalization rate for dwellings that transacted with an energy performance certificate.
- Labeling itself does not lead to a significant change in buyer's valuation of the dwelling

- Examine how the value of energy efficiency varies over-time.
  - Use the sample of houses that transacted between 2003-2011 without EPC
  - Estimated the same model for each year seperately

| Year | $Log(Gas Cons. per m^2)$ | Ν      |
|------|--------------------------|--------|
| 2003 | -0.156***<br>[0.056]     | 42,346 |
| 2004 | -0.177***<br>[0.053]     | 42,847 |
| 2005 | -0.144***<br>[0.049]     | 48,702 |
| 2006 | -0.202***<br>[0.054]     | 48,632 |
| 2007 | -0.160***<br>[0.054]     | 47,976 |
| 2008 | -0.175***<br>[0.052]     | 39,030 |
| 2009 | -0.302***<br>[0.085]     | 28,742 |
| 2010 | -0.319***<br>[0.092]     | 30,768 |
| 2011 | -0.248***<br>[0.084]     | 28,936 |
|      |                          |        |

June 25, 2015

Value of Energy Efficiency and Gas Prices



ERES Conference

Capitalization of Energy Efficiency

Value of energy efficiency has doubled from 2003 to 2011

increase in energy prices,

 general influence of policies and information campaigns stressing the importance of energy efficiency.

## Benefits and Costs of Energy Efficiency Investments

- If the energy requirement of a dwelling is reduced by half;
  - Its market value increases by around €23,000 for the average dwelling in our sample.
  - Besides, €535 annual saving in energy costs
- Costs:
  - Required saving measures cost around €15,000 (MilieuCentraal).

## Benefits and Costs of Energy Efficiency Investments

- Why energy efficiency investments in the housing sector are below the optimal level?
  - Additional costs
    - Nuisance during the retrofit work
    - Information costs
  - Risk of undervaluation in the market
  - Liquidity constraints
  - Future discounting behavior

June 25, 2015

## Policy Implications

- The results may be used to enhance the public awareness regarding the financial benefits of energy efficiency investments.
- The financial benefits that homeowners can derive from energy efficiency improvements can be incorporated into the energy performance certification programs.