REINCARNATE

What matters when? - A comprehensive literature review on decision criteria in different stages of the adaptive reuse process

ERES 29th Annual Conference 2023

14-07-23

Table of Content

- The problem
- Adaptive reuse as a concept
- Research question and aim
- Scientific and societal relevance
- Research methodology
- Results
- Discussion
- Conclusion
- Recommendations for further research

The Problem

- Buildings worldwide account for:
- 40% of the worlds waste
- 40% of the material resources
- 33% of all human induced emissions
- The average lifetime of a building is **39** years
- Most common reason for building demolition
 - functional /economic obsolescence

Towards a circular economy

THE DIFFERENCE BETWEEN LINEAR AND CIRCULAR ECONOMY

Circular Built Environment

- Circular Economy Action Plan (EU)
- Nederland Circulair 2050 (NL)
- Circular Built Environment = Adaptive Reuse

A circular economy in the Netherlands by 2050

A summary of the commitment and priorities of the government of the Netherlands

Adaptive Reuse

Functional obsolescence – changing the function and reusing the building!

Adaptive Reuse: "process of converting building for a new use, different from the initial aim of its construction"

Benefits of adaptive reuse

• Preserving embodied energy

- Reducing operational energy
- Reducing construction waste, material consumption, raw materials

Challenges arise

- Building regulation changing functionHigher risk for the return on investment
- Cost and time overruns
- Structural defects
- gentrification
- Technical challengesFunctional / layout challenges
- Lack of guidance

decision making process

- Complex
- Variety of stakeholders involved (public-private)
- A lot of (contradictory)decision criteria
- Economic viability
- Difficulty in establishing a sense of place and identity
- -> Multi Criteria Decision Making Models

Multi Criteria Decision Making Model for AR

- No consensus on criteria
- No consensus on what tool
- Specific to situation
- Alternatives are too broad or too specific
- Most models don't consider the whole AR process
- Focus on **circularity** is lacking
- Lack of validation

Research Question & Aim

RQ: What are the criteria in decision making for the adaptive reuse of buildings during the different phases of the AR process?

Aim: provide a state-of-the-art overview of the decision criteria for adaptive reuse throughout the AR process, in order to identify areas for future research.

Research Methodology

Integrative literature review

- "Useful tool for synthesizing a conceptual model for an emerging concept"
- Systematic search approach
 - Iterative 15 step model
- PRISMA-P method for selecting sources
- Systematic screening process
- Reflexive thematic analysis
 - PESTLE framework
- **AR process model** (Arfa et al., 2022)

Screening process

- Initial database: 9656 publications
- Brought back to 94
 PRISMA-P method:
 - Removing duplicates
 - Title screening
 - Abstract screening
 - Full-text screening
- Focus on building level

Following definitions for screening were used:

Adaptive reuse: "The process of converting the function of an existing building into another, which is substantially different from that function, in which the building was originally designed for" (function change)

Criteria: "A principle or standard by which something may be judged or decided" (broad definition)

Integrative analysis

- Thematic reflexive analysis (Miro)
 - Hierarchical form
 - MAVT approach (objectives, criteria)
 - PESTLĖ
- **AR process model** (Arfa et al., 2022)
 - Distinct phases within the AR process
 - Implementation phase was excluded

Results

- 94 publications over 3 phases (pre-project, preparation, and post-completion phase
- A lot of similarities between phases
- Most repeated categories are economic and architectural / physical

Pre-project phase

- **Central question** in this phase: Should the building be preserved, reused, or demolished?
- Publications in this phase (42):
 - criteria formulation
 - Measuring adaptability / adaptive reuse potential
- Thematic reflexive analysis resulted in:
 - 7 categories
 - Politics and Regulations, Economic, Socio-Cultural, Technological, Environmental. Architectural / physical, Functional
 - 30 objectives
 - 65 criteria

٠

Most repeated criteria:

- Market opportunity due to location
- Flexibility of spaces / layout
- Structural integrity

Preparation phase

- **Central question** What is the best option for adaptive reuse?
- Publications in this phase (36):
 - Multi-criteria decision making between adaptive reuse options
- Thematic reflexive analysis resulted in:
 - 7 categories
 - Economic, Social, Technological, Environmental, Legal, Architectural / physical, Cultural
 - 25 objectives
 - 64 criteria
- Most repeated criteria:
 - Compatibility with the existing surroundings
 - Community Engagement
 - Local economic benefits

E		S	[Т)[E	[L		A	- Building size Site size - Building coverage ratio - Compatible with the	C	
	Profitability				Physical						existing surroundings	•	Overall
	Increased				condition of	•	Environmental		 Urban master 		Compatibility of the lawout with the new		aesthetics of
	Sources of		Gentrification		the technology		Impact of the		Zoning policies		function		the buildings
	finance			•	Integration of		building		 Buildings codes 		 Compatibility of the systems with the 	•	Authenticity
	Initial	•	Unemployment		technologies		Water quality		and standards		new function		
	Adaptation /		Community	•	Flexibility of				 Heritage regulations 		flexibility		Architectural
	conversion		engagement		the	•	Air quality		Fire safety		 Disassembly potential 		incegine,
	costs				Electrical		Ecological		regulations		Minimal intervention	•	Preserve
	Maintenance costs	•	Public spaces		system		quality		 Occupational health 		Material durability/		architectural beritage
	Investment		Learning		performance		o " (1		regulations		structural integrity		nemuge
	cost		opportunities	•	Energy system	•	Quality of the		Building		 Load bearing capacity 	•	Historical value
	Job creation				Water systems		landscape		security /		Robustness of the		
	 Local economic benefits 				performance				regulations		Vehicle accessibility		Regional and Cultural values
	Plot size and			•	Thermal	•	Climate		regulations		 Pedestrian accessibility 		Currandi Values
	location			•	Acoustics		adaptation				Public transport		
	Target users			:	ventilation		measures				accessibility Disability		
					- children						accessibility		

Post-completion phase

• **Central question** Was the adaptive reuse project successful?

Publications in this phase:

- Determining success factors
- Assessment for future adaptation
- Success evaluation

Thematic reflexive analysis resulted in:

- 8 categories
 - Political, Economic, Social, Technological, Legal, Environmental, Architectural / physical, Cultural
- 30 objectives
- 61 criteria

٠

Most repeated criteria:

- Cultural value
- Flexibility of spaces / layout
- Return on investment

Interrelationships and contrasts

• Difference in the aim of the publications

Discussion

- Lack of publications in the implementation phase
- Weighting of the criteria and way of measuring might differ between phases
- The decision options for adaptive reuse are either really broad (functional use) or really specific (specific design option
- Lack of specific environmental criteria focusing on health, well-being and biodiversity

Conclusion

- The aim of this paper: provide a state-of-the-art overview of the decision criteria for adaptive reuse throughout the AR process, in order to identify areas for future research.
- Outcomes can serve as a **resource** for future multi-criteria decision-making approaches
- Decision criteria show a lot of similarities between phases
- The most repeated decision criteria correspond to economic and architectural / physical categories

Recommendations for further research

- More research in the **differences of weighting and measurement** of the criteria between phases
- More research into the decision criteria in the **implementation phase**
- Alternatives and options considered in the multi criteria decision making models for adaptive reuse should consist of more holistic scenarios that provide a general overview of what is possible when pursuing adaptive reuse.
- Environmental decision criteria should be considered from a broader perspective looking at: biodiversity, climate adaptation, soil quality and health and well-being.

What's next?

- Developing circular adaptive reuse scenarios
- Developing a multi-criteria decision-making model that incorporates the decision criteria and the circular adaptive reuse scenario
- Apply the MCDM model to multiple case studies in the Reincarnate project
- Validate the model according to multiple validation methods

Thank you!

Relevance

Scientific relevance

- Few publications have considered the decision-making process for adaptive reuse as a whole
- A lack of a uniform vision surrounding the decision criteria for adaptive reuse throughout the whole adaptive reuse process
- A lack of a comprehensive overview of decision criteria for adaptive reuse throughout the AR process

Societal relevance

- Lack of guidance and participation in the AR decision-making process
- The importance of adaptive reuse as a circular strategy towards a circular economy

