The inclusion of portfolio sales in real estate price indices

Working paper presentation at the ERES 2023 conference

14-07-2023 Farley Ishaak

Background

Data & methods

Results

Conclusion

Introduction

- Transactions in commercial real estate take more different form than in owner occupied housing:
 - Share deals ... (Ishaak, Van Schie, De Haan & Remoy, 2023)
 - Multiple buyers and sellers ...
 - ... and: portfolio sales

Background

Data & methods

Results

Conclusion

e

Introduction

This is problematic, because ...

- ... portfolio's can include **multiple** property **types**;
- ... the characteristics of portfolio elements can differ and this does not fit a hedonic model

Introduction

Background

Data & methods

Results

Conclusion

This is problematic, because ...

- ... portfolio's can include **multiple** property **types**;
 - ... the characteristics of portfolio elements can differ and this does not fit a hedonic model
 - ... the **unit of measurement** is different and this disrupts a price index model.

Unit is portfolio or single property

 $p = \alpha + \beta_{\alpha} x_{\alpha} + \beta_{b} x_{b} + \beta_{c} x_{c} + \beta_{n} x_{n}$

Background

Data & methods

Results

Conclusion

Introduction

Research questions:

- What is the **impact** of portfolio sales **on** Commercial Property Price Indices (**CPPIs**)?
- What are legitimate methods to process portfolio sales in the compilation of CPPIs?

Background

Data & methods

Results

Conclusion

TUDelft

Background

The **market of investors** in CRE is characterized by portfolios of real estate

(Brown & Mathyslak, 1995; Geltner D., 1997).

7

Background

Data & methods

Results

Conclusion

Background

 The market of investors in CRE is characterized by portfolios of real estate

(Brown & Mathyslak, 1995; Geltner D., 1997).

Several studies have identified complexities of portfolios and have suggested methods to deal with it

(Kallberg, Liu, & Greig, 1996; Kolodziejczyk, Mielcarz, & Osiichuk, 2019; Goetzmann, 1992)

• It has not been studied how to **split** a portfolio sale.

Introduction	
Background	
Data & methods	
Results	
Conclusion	
TU Delft	

- Transactions \rightarrow Land Registry Office
- Range: 1995 2023

Portfolio A	Transaction price
Property 1	
Property 2	
Property 3	
	€ 10,000,000

É UDelft

Introduction

Background

Results

Conclusion

Data & methods

Data and methodology

- 3 imputation methods
- 2 assessment methods

Background

Data & methods

Results

Conclusion

UDelft

Data and methodology

3 imputation methods

Portfolio A	Transaction price
Property 1	
Property 2	
Property 3	
	€ 10,000,000

Background

Data & methods

Results

Conclusion

UDelft

Data and methodology

3 imputation methods

Portfolio A	Transaction price	M²	Valuation	Valuation / M ² neighbourhood
Property 1				
Property 2				
Property 3				
	€ 10,000,000			

Introduction

Background

Data & methods

Results

Conclusion

UDelft

07

3 imputation methods

Imputation = $\frac{m^2}{\sum m^2}$ portfolio price

Portfolio A	Transaction price	M²	Valuation	Valuation / M ² neighbourhood
Property 1		500		
Property 2		100		
Property 3		400		
	€ 10,000.,00			

Introduction

Background

Data & methods

Results

Conclusion

UDelft

3 imputation methods

Imputation = $\frac{m^2}{\sum m^2}$ portfolio price

Portfolio A	Transaction price	M²	Valuation	Valuation / M ² neighbourhood
Property 1	€ 5,000,000 ←			
Property 2	€ 1,000,000 ←	- 100		
Property 3	€ 4,000,000 ←			
	€ 10,000,000	10,000		

Introduction

Background

Data & methods

Results

Conclusion

UDelft

3 imputation methods

 $Imputation = \frac{valuation}{\sum valuation} portfolio price$

Portfolio A	Transaction price	M²	Valuation	Valuation / M ² neighbourhood
Property 1			€ 8,000,000	
Property 2			€ 8,000,000	
Property 3			€ 4,000,000	
	€ 10,000,000		€ 20,000,000	

Introduction

Background

Data & methods

Results

Conclusion

UDelft

valuation

€ 4,000,000

€ 20,000,000

 $Imputation = \frac{valuation}{\sum valuation} portfolio price$

€ 2,000,000

3 imputation methods

Portfolio A

Property 1

Property 2

Property 3

Introduction

Background

Data & methods

Results

Conclusion

ÚDelft

3 imputation methods

Imputation = $\frac{m_i^2(V/m_{n_i}^2)}{\sum m_i^2(V/m_{n_i}^2)}$ portfolio price

Portfolio A	Transaction price	M²	Valuation	Valuation / M ² neighbourhood
Property 1		500		€ 10,000
Property 2		100		€ 8,000
Property 3		400		€ 12,000
	€ 10,000,000			

Introduction

Background

Data & methods

Results

Conclusion

UDelft

3 imputation methods

 $Imputation = \frac{m_i^2(V/m_{n_i}^2)}{\sum m_i^2(V/m_{n_i}^2)} \text{ portfolio price}$

Portfolio A	Transaction price	M²	Valuation	Valuation / M ² neighbourhood
Property 1	€ 4,700,000	500		€ 10,000
Property 2	€ 800,000	100		€ 8,000
Property 3	€ 4,500,000	400		€ 12,000
	€ 10,000,000			

1

Data and methodology

2 assessment methods -> resampling

- Permutation test
- Use single object sales as test set
- Simulate portfolio's with this test set
- Assess the differences with the observed prices (residuals)

2

Data and methodology

2 assessment methods -> resampling

- Jack-knife cross validation
- Calculate index with and without each imputed portfolio
- Assess the differences for each portfolio (share in index development)

Introduction Background Data & methods Results Conclusion

Results

Imputation valuations

Results

Imputation m²

Results

ŤUDelft

Imputation valuation / m² neighborhood

Results

Jack-knife cross validation

24

Conclusions

Introduction

Background

Data & methods

Results

<u> </u>	•
Concl	licion
COLL	lusion

델믹	

ŤUDelft

- The volume of portfolio sales indicates that portfolio sales should be included
- The difference in price developments indicates that portfolio sales should be included
- There are methods that approximate realistic individual prices
- For these methods, additional data is required
- The quality of the methods is heavily dependent of the data

Also conducting research on portfolio sales?

Please don't hesitate to contact me.

Farley Ishaak

PhD candidate @TU Delft

Production manager RE prices @Statistics Netherlands f.f.Ishaak@tudelft.nl

s