

THE CRITICAL SUCCESS FACTORS FOR TRANSIT-ORIENTED DEVELOPMENT OF RAILWAY STATIONS IN MALAYSIA

ASSOCIATE PROF. DR. BADARIAH HAJI DIN ASSOCIATE PROF. DR HALIMAH ABDUL MANAF ASSOCIATE PROF. DR. ROHAFIZ SABAR DR. NUR KHAIRIEL ANUAR

COLLEGE OF LAW, GOVERNMENT AND
INTERNATIONAL STUDIES,
UNIVERSITI UTARA MALAYSIA
06010 SINTOK KEDAH
PENINSULAR MALAYSIA

The authors would like to extend their appreciations to National Valuation Institute of Malaysia (INSPEN), Valuation & Property Services Department (JPPH Malaysia) and Ministry of Finance Malaysia for funding this research through The National Real Property Research Coordinator (NAPREC) grant (R&D 25/2021).

Contents of the Presentation

01

INTRODUCTION

Motivations, Gaps and Objectives

04

FINDINGS

Demographics, Findings of Research Objective 1, 2 and 3

02

LITERATURE REVIEW

Critical Success Factors, Quality of Life and Research Models

05

CONCLUSION

Contributions, Limitations & Concluding Remarks

03

METHODOLOGY

Multi-Method Design, Population & Sampling and Data Collection Modes

INTRODUCTION

4th National Physical Plan (NPP4) or Rancangan Fizikal Negara Keempat (RFN4) is aiming for building a prosperous and resilient nation to ensure continuous well-being guided by 3 development thrusts that are aligned with TOD principles.

-PLANMalaysia (2021)

Motivations of the Study (cont')

TOD is gaining wide acceptance by the local governments, particularly in Selangor and KL due to benefits such as mitigating urban sprawl, reducing traffic congestion and supporting sustainable development.

-Gomez, Omar & Nallusamy (2019); Yap, Chua & Skitmore (2021).

Traffic congestion in Penang is getting worse

HOME | Contact Us | About Us | F Facebook

Motivations of the Study (cont')

However, not all states had formally initiated TOD projects especially in the northern parts of Peninsular Malaysia. Albeit northern states such as Perlis, Kedah and Penang are small in size and less busy compare to central regions, the problems of traffic congestion and urban sprawl are still evident and getting worse.

RANCANGAN STRUKTUR
NEGERI KEDAH
2035

Motivations of the Study (cont')

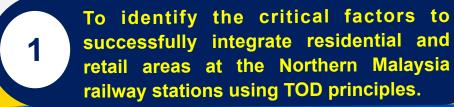
In fact, Kedah State Plan 2035 and Penang State Plan 2030 highlighted **TOD planning** as one of the strategic policies towards smart growth and urban renewal visions

Objectives

To measure the impact of these critical factors on residents and retailers' quality of life.

GAP 02

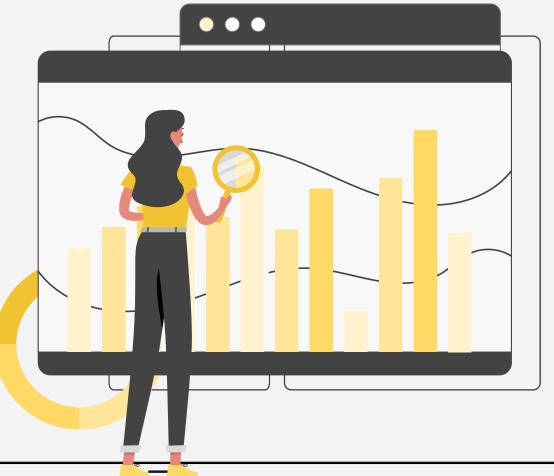
TOD studies focused on examining the success and performance of TOD adoptions are most often solely based on **experts viewpoints** or **spatial data**.


GAP 01


Most of the TOD studies in local context are devoted to railway stations in urban areas, while suburban and rural stations are poorly investigated.

GAP 03

Most studies have not assessed TOD adoption in a comprehensive manner. **Only focused on certain criteria**; e.g., land-use diversity, demand management, walkable design.



Literat Review


Critical Success Factors of

TOD

Diversity

Land-use diversity: Different land uses in a buffer area & the degree to which they are present in that area

Density

Population & employment relative to the size of the buffer area

Design

Walkable design: Good street connectivity for pedestrian & cyclist to access resources within the buffer area

Take Public Transportation

Destination

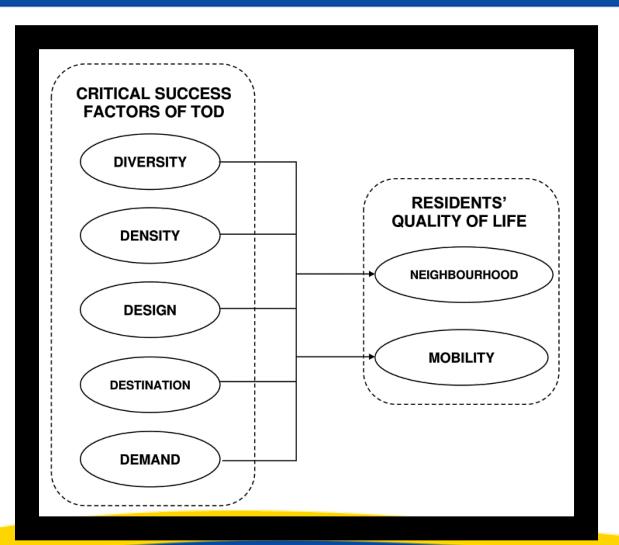
Destination accessibility: The ease of access to resources outside the buffer area without the need for personal vehicle trips.

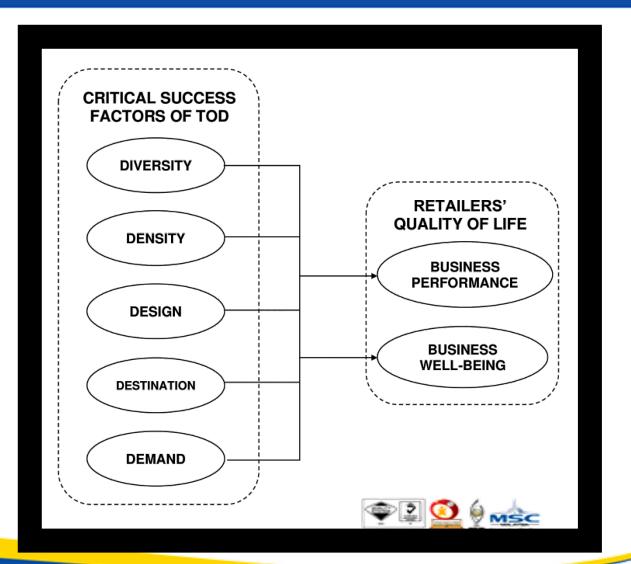
Demand

Demand management:
Strategies aimed at reducing the need for personal vehicle trips

Dissonance

Residential dissonance: Mismatch between current residential neighbourhood & the preferred one


Outcomes of TOD Adoption:



Research Models

RESEARCH METHODS

- Multi-Method Design
- 2. Population & Sampling
- 3. Data collection mode

Research Objectives

RO1: To identify the critical factors to successfully integrate residential and retail areas at the Northern Malaysia railway stations using TOD principles.

RO2: To measure the impact of these critical factors on residents and retailers' quality of life.

Research Design

Quantitative Data from Survey

POPULATION &

SAMPLING

SURVEY

MINIMUM SAMPLE SIZE

POPULATION

Passengers of KTM Commuter Northern Sector

SAMPLING FRAME

Not available: Kept private & confidential by KTMB.

SAMPLING TECHNIQUE

Purposive sampling:

Specific group of people on some rational criteria (Sekaran & Bougie, 2016; Memon, Ting, Chuah, & Cheah, 2017).

UNIT OF ANALYSIS

Individual

DATA COLLECTION MODE

Personally administered: Drop-and-collect

Exhibit 1.7 Sample Size Recommendation a in PLS-SEM for a Statistical Power of 80%												
	Significance Level											
		1	%		5%				10%			
Maximum Number of Arrows Pointing at a		Minim	um R²		Minimum R ²			Minimum R ²				
Construct	0.10	0.25	0.50	0.75	0.10	0.25	0.50	0.75	0.10	0.25	0.50	0.75
2	158	75	47	38	110	52	33	26	88	41	26	21
3	176	84	53	42	124	59	38	30	100	48	30	25
4	191	91	58	46	137	65	42	33	111	53	34	27
5	205	98	62	50	147	70	45	36	120	58	37	30
6	217	103	66	53	157	75	48	20	120	(2)	[+]	22
7	228	109	69	56	166	80	51			(
8	238	114	73	59	174	84	54	_		Des	tination	

181

189

62

64

76

79

Source: Cohen, J. A power primer. Psychological Bulletin, 112, 155-519.

247

256

Cohen (1992) as recommended by Hair et al. (2012)

119

123

5 arrows pointed at Quality of Life constructs (Mobility & Neighbourhood)

POPULATION &

SAMPLING

CASE STUDY

POPULATION

KTM Commuter Northern Sector railway stations

SAMPLING FRAME

22 stations from Padang Besar, Perlis to Padang Rengas, Perak.

SAMPLING TECHNIQUE

Purposive sampling: 7 potential stations

UNIT OF ANALYSIS

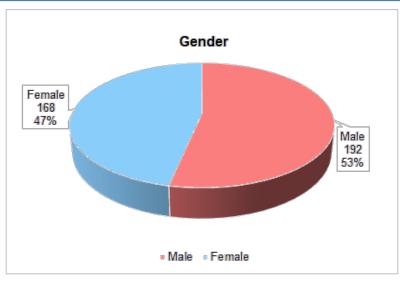
Individual location

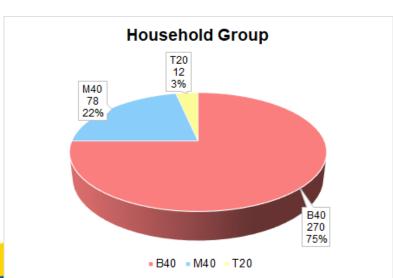
DATA COLLECTION MODE

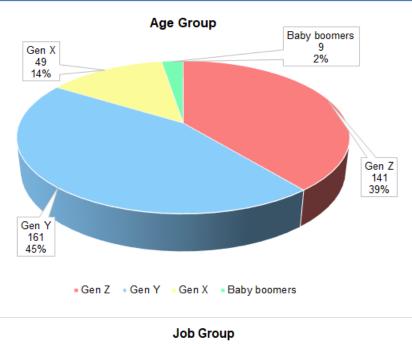
Site observation and request from PLANMalaysia Perlis, Kedah & Penang

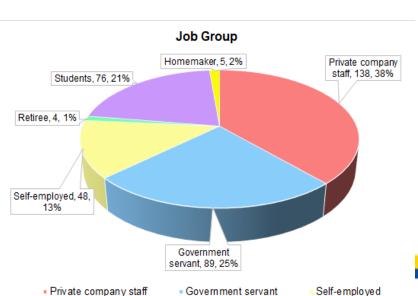
FINDINGS

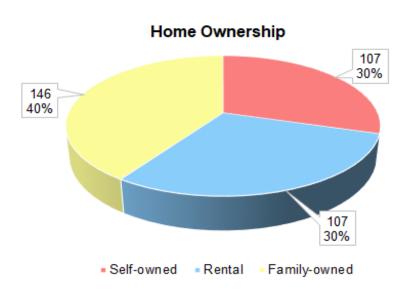
- 1. Demographic information
- 2. Construct validity & reliability
- 3. Level of Financial Well-Being
- 4. Significance of hypothesised relationships

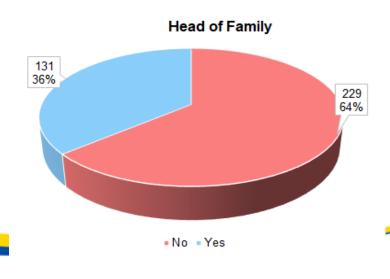


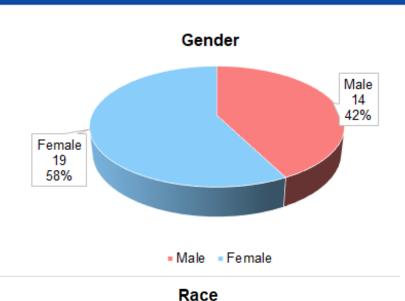





DEMOGRAPHIC INFORMATION RESIDENTS







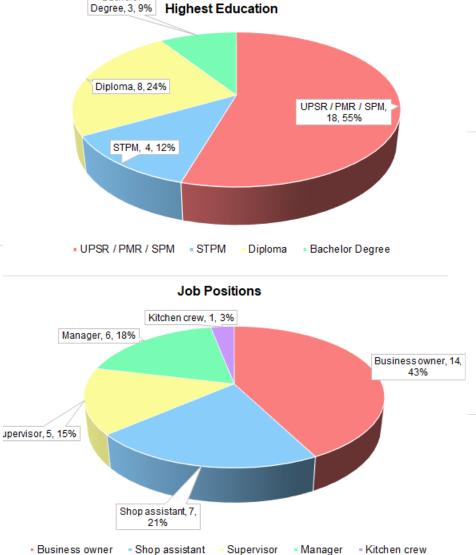
DEMOGRAPHIC INFORMATION RETAILERS

Others, 2, 6%

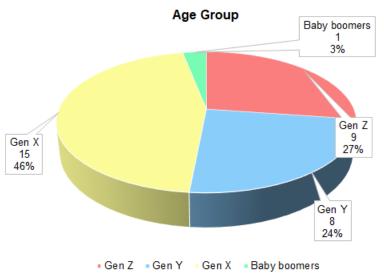
Malay - Chinese

Malay 25

76%


Indian
 Others

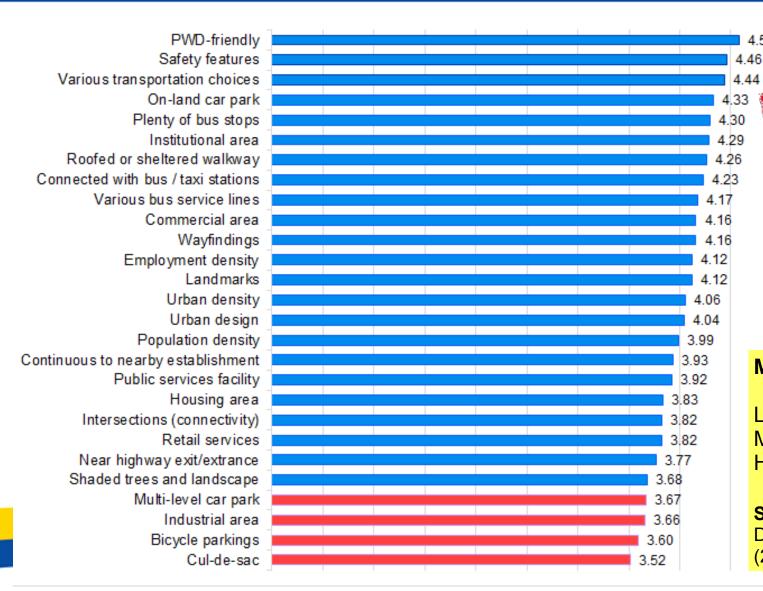
Indian 2


6%

Chinese

12%

Bachelor


Findings for Research Objective

TOD Indicators' Mean Scores (Residents)

RO1

ACCOMPLISHED

Mean Thresholds

Low: 1.00 to 2.33

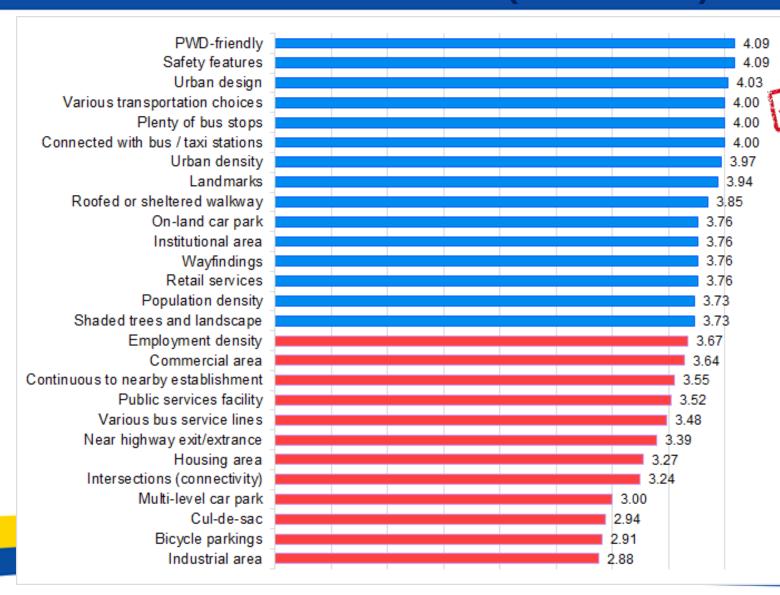
Medium: 2.34 to 3.67

High: 3.68 to 5.00

Source:

Darusalam and Hussin

(2018)



TOD Indicators' Mean Scores (Retailers)

RO1

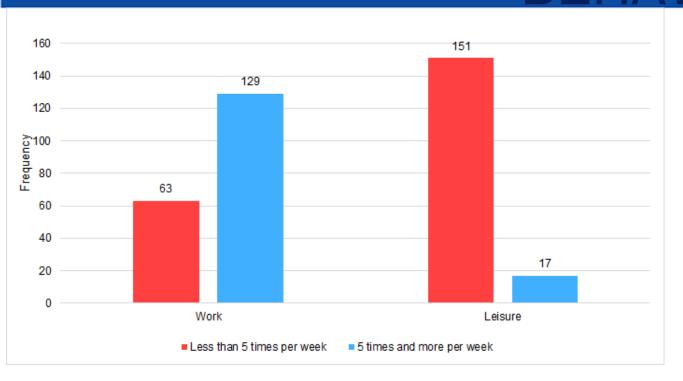
ACCOMPLISHED

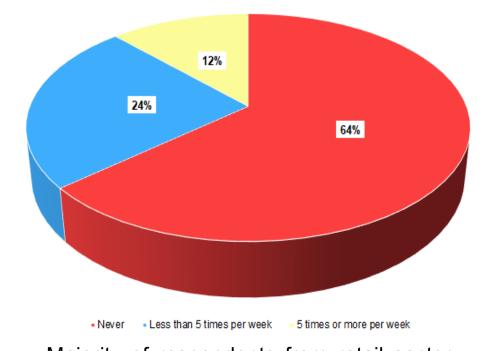
Mean Thresholds

Low: 1.00 to 2.33 Medium: 2.34 to 3.67 High: 3.68 to 5.00

Source:

Darusalam and Hussin (2018)



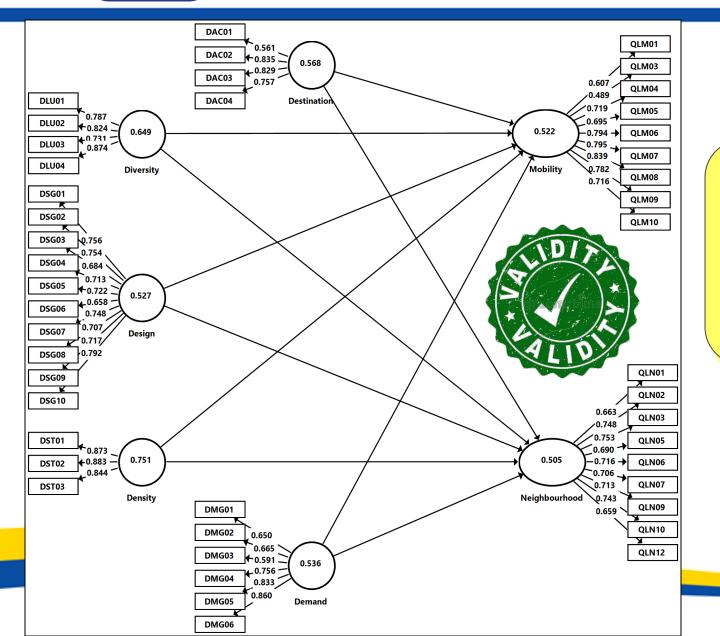


PATTERNS IN TRAVEL BEHAVIOUR

Majority of respondents from retail sector **NEVER** ride the train, despite working at the station or within 500m from the station.

There was a **significant difference** in travel behaviour patterns between respondents who travel for **work** and travel for **leisure** at p < 0.001.

Therefore, the analysis for testing causal relationships between TOD critical success factors and TOD benefits need to be **performed separately according to different travel purposes**.


Findings for Research Objective

Residents: Travel for Working

Threshold

Convergent validity:

AVE > 0.5

Source:

Hair et., al (2019)

	Demand	V _t Q _s ty		Destination	Diversity	Mobility	Neighbourhood	
Demand								
Density	0.582							
Design	0.763	0.478						
Destination	0.831	0.582	0.707					
Diversity	0.651	0.633	0.469	0.522				
Mobility	0.172	0.114	0.185	0.123	0.159			
Neighbourhood	0.313	0.187	0.359	0.254	0.186	0.639	LIDIT	

Threshold

Discriminant validity:

HTMT < 0.85

Source:

Hair et., al (2019)

Working

Significant impact:

- Design → Mobility
- Design → Maiabhaurhaad

Threshold

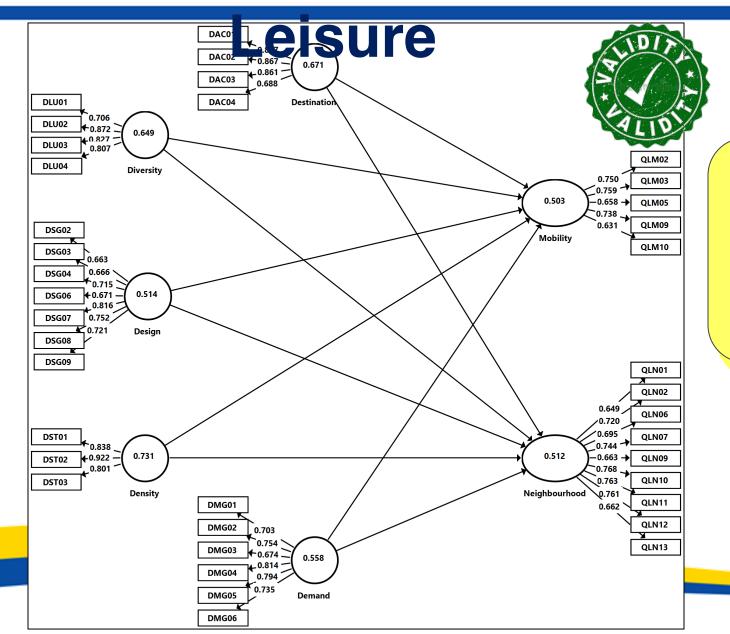
T statistics >

1.65

P values <

0.05

Source:


Hair et.,al (2019)

Relationships	Path Coefficients (β)	T Statistics	P Values
Demand -> Mobility	0.183	1.398	0.081
Demand -> Neighbourhood	0.147	1.134	0.128
Density -> Mobility	-0.080	0.792	0.214
Density -> Neighbourhood	0.006	0.062	0.475
Design -> Mobility	0.198	1.667	0.048
Design -> Neighbourhood	0.245	2.585	0.005
Destination -> Mobility	-0.113	0.804	0.211
Destination -> Neighbourhood	0.030	0.228	0.410
Diversity -> Mobility	-0.156	1.117	0.132
Diversity -> Neighbourhood	-0.033	0.287	0.387

Threshold

Convergent validity:

AVE > 0.5

Source:

Hair et., al (2019)

Constructs	Demana	Density	Design	Destination	Diversity	Mobility	Neighbourhood
Demand							
Density	0.562						
Design	0.742	0.677					
Destination	0.758	0.605	0.759				
Diversity	0.519	0.579	0.547	0.581			
Mobility	0.245	0.220	0.410	0.351	0.196		
Neighbourhood	0.377	0.340	0.461	0.365	0.403	0.727	LIDI

Threshold

Discriminant validity:

HTMT < 0.85

Source:

Hair et., al (2019)

RO2

Leisure

Threshold

T statistics >

1.65

P values <

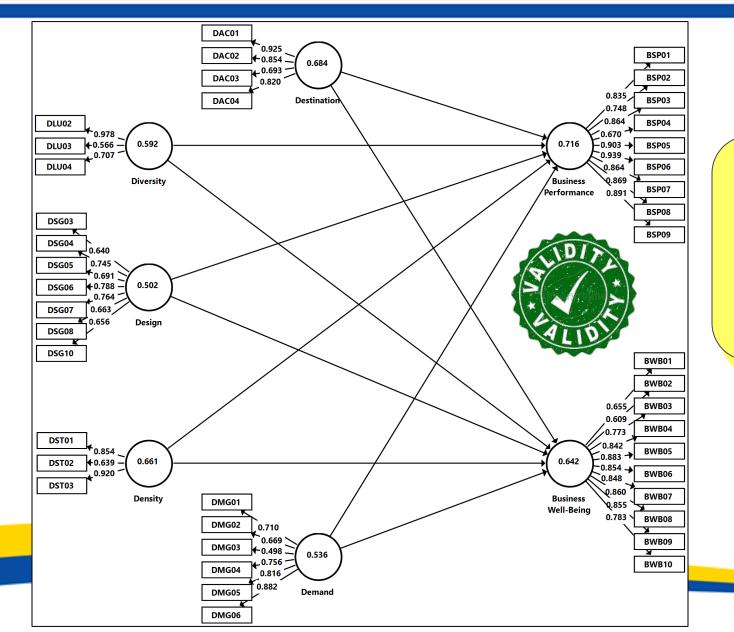
0.05

Source:

Hair et.,al (2019)

CCOMPLISHED Relationships			
Relationships	Path Coefficients (β)	T Statistics	P Values
Demand -> Mobility	-0.075	0.615	0.269
Demand -> Neighbourhood	0.078	0.790	0.215
Density -> Mobility	-0.050	0.413	0.340
Density -> Neighbourhood	-0.005	0.057	0.477
Design -> Mobility	0.334	3.024	0.001
Design -> Neighbourhood	0.246	2.416	0.008
Destination -> Mobility	0.159	1.189	0.117
Destination -> Neighbourhood	0.006	0.065	0.474
Diversity -> Mobility	-0.007	0.067	0.473
Diversity -> Neighbourhood	0.245	3.018	0.001

Significant impact:


- Design → Mobility
- Design → Neighbourhood
 - Diversity → Neighbourhood

Retailers

Threshold

Convergent validity:

AVE > 0.5

Source:

Hair et., al (2019)

Retailers

Constructs	Business Performance	Business Well-Being	Demand	Density	Design	Destination	Diversity
Business Performance							
Business Well-Being	0.833						
Demand	0.298	0.417					
Density	0.523	0.484	0.432				
Design	0.253	0.305	0.607	0.648			
Destination	0.288	0.378	0.547	0.432	0.553		
Diversity	0.192	0.181	0.530	0.424	0.625	0.399	

Threshold

Discriminant validity:

HTMT < 0.85

Source:

Hair et.,al (2019)

Retailers

RO2

Threshold

T statistics >

1.65

P values <

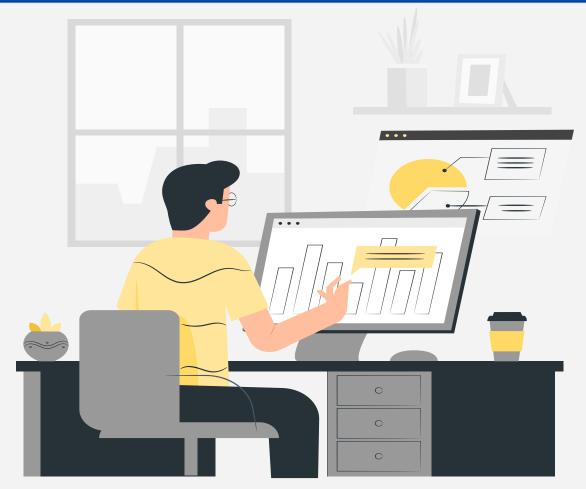
0.05

Source:

Hair et.,al

	ACCOMPLISHED			
	Relationships	Path Coefficients (β)	T Statistics	P Values
	Density -> Business Performance	0.431	2.144	0.016
>	Density -> Business Well-Being	0.324	1.674	0.047
	Design -> Business Performance	0.045	0.128	0.449
	Design -> Business Well-Being	0.275	0.797	0.213
	Diversity -> Business Performance	0.055	0.214	0.415
	Diversity -> Business Well-Being	-0.132	0.494	0.311
	Demand -> Business Performance	0.242	0.796	0.213
	Demand -> Business Well-Being	0.371	1.408	0.080
	Destination -> Business Performance	0.174	0.575	0.283
	Destination -> Business Well-Being	0.196	0.749	0.227

Significant impact:


- Density → Business Performance
- Density → Business Well-Being

CONCLUSION

- 1. Contributions
- 2. Concluding Remarks

Conceptualising a variable from different perspective

Conceptualised critical success factors from 5 unique TOD principles; 1. Diversity, 2. Density, 3. Design, 4. Destination & 5. Demand

Conceptualised Quality of Life from two different perspectives; 1. residents and 2. retailers

Searching for new relationships in a phenomenon of interest

Established relationships between 5 TOD principles and 4 domains of Quality of Life (i.e., Neighbourhood, Mobility, Business Performance & Business Well-Being)

Contributions

TRANSIT ORIENTED DEVELOPMENTS

Benefits

New planned mixed use communities

Efficiency and productivity geins

Unlocking development opportunities
and durdun contributions to information the

MSC

Universiti

Contributions

Assist Urban Planners & Policy-Makers

in making inclusive decisions regarding TOD strategic planning and policies.

Highlight the importance of walkable design to realise quality of life from the perspective of residents

To develop potential train station areas into a full-fledged TOD city

School of Government,
College of Law, Government and International
Studies Universiti Utara
Malaysia, Malaysia

badariahdin@uum.edu.my

