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Abstract

Economists have been advocating for a land tax rather than a reg-

ular property tax. There are, however, several challenges to value land

for tax purposes. Indeed, data on vacant land transactions are scarce,

land and structure are conventionally traded in a bundle and it is hard

to capture all factors that determine the value of land. We propose to

use a new Bayesian spatial model and apply the model to the uni-

verse of vacant and improved land sales from Belgium in 2018. Our

results indicate that vacant land prices are substantially more difficult

to predict than house prices. However, the predictive performance of

the spatial model improves considerably in comparison to a regular

linear hedonic approach. Models that combine data from vacant and

improved land are unable to improve the predictive accuracy.
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1 Introduction

Economists have been advocating for a land tax rather than a regular prop-

erty tax on the value of the house as a regular property tax may distort

investments in structure (George 1879, Anas 2015, Yang 2014). However,

most countries tax both land and structure as only three OECD countries

levy a pure land tax in 2014 (Blöchliger & Kim 2016). A major challenge for

the implementation of a land tax is that the land value of each plot is not

directly observed. Therefore, methods are required to be able to accurately

assess the value of each plot of land.

There are, however, several challenges to value land. First, data on va-

cant land transactions are scarce. Indeed, vacant land is rarely transacted

and does not follow a uniform pattern across space (Larson & Shui 2022).

In addition, it is often difficult for researchers to obtain data on land sales.

Second, land and improvement are conventionally traded in a bundle, ren-

dering the disentanglement of both components arduous. These methods

typically need additional data on the cost of structures to be able to de-

compose the total price into the structure and land components.1 Third,

it is hard to capture all factors that determine the value of land. A lot of

potential covariates such as distance to amenities, zoning plans or local

infrastructure are not easy to measure or cannot be obtained at all. These

unobserved variables complicate the accurate assessment of land values.

To tackle these challenges, we use a Bayesian spatial model which enjoys

great popularity in spatial settings (Besag et al. 1991, Cressie 1993, Diggle

& Ribeiro 2008) and use different types of spatial approaches to model the

land values. We apply the model to the universe of vacant and improved

land sales from Belgium in 2018, which includes both urban and rural

transactions.
1A large literature has proposed different methodologies to disentangle the value of

land and structure, see Diewert et al. (2015), Kuminoff & Pope (2013), Davis & Palumbo
(2008), Davis et al. (2017, 2021) among others.
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Our methodology and data allow us to answer several research ques-

tions. First, we study whether it is more difficult to predict vacant land

prices in comparison to improved land. The results indicate that the pre-

dictive accuracy is worse for models that predict vacant land. Therefore,

our findings confirm the above-described challenges to predict vacant land

prices. Second, we study whether the spatial model that we propose is

able to improve the accuracy of a standard linear model. The results indi-

cate that the spatial component of the novel statistical approach is able to

capture a large portion of the spatial variation. All classic metrics of pre-

dictive accuracy improve in the spatial model in comparison to a regular

linear specification. In our models to predict vacant land, the R-squared of

the spatial model is twice as high in comparison to a linear specification.

Third, because we have access to both vacant and improved land sales, we

are able to study whether models that are trained on improved land are

able to accurately predict vacant land. The results, however, indicate that

our models that are trained on improved land or a combination of vacant

and improved land are unable to improve the predictive accuracy of the

models that are trained on vacant land.

We contribute to the existing literature in several ways. First, we are the

first to propose to use a Bayesian approach using the Integrated Nested

Laplace Approach. The approach is able to accommodate a large class of

models and is often faster than alternative algorithms. Moreover, we in-

clude a spatial component in our model which we find to improve predic-

tive performance considerably in comparison to classic hedonic approaches

that are common in the existing literature that studies (near-)vacant land

(Haughwout et al. 2008, Nichols et al. 2013, Albouy et al. 2018, Barr et al.

2018, Gedal & Ellen 2018).

A second contribution is due to the new data that we bring to the table.

A considerable portion of the existing literature either uses the Maricopa

data set for the metropolitan area of Phoenix, AZ (Clapp et al. 2021, Clapp

& Lindenthal 2020, Larson & Shui 2022, Bourassa & Hoesli 2022) or the
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CoStar COMPS data set for metropolitan areas across the U.S. (Albouy

et al. 2018, Haughwout et al. 2008, Nichols et al. 2013). Our data includes

both urban and rural land in order to give full insight into land values

across different locations. Indeed, a number of papers only concentrate on

urban vacant land (Albouy et al. 2018, Clapp et al. 2021, Gedal & Ellen

2018). Studies that only focus on land in urban locations may suffer from

a lack of generalizability. Another advantage of our data is that it includes

both vacant and improved land. Therefore, we are able to compare val-

uation of land from vacant land models with models estimated on both

structure and land.

Third, we cross-validate our results thoroughly. Through this, we can

make more confident statements about the quality of our models. Despite

a substantial literature on land prices, very few papers evaluate the out-of-

sample predictive accuracy of their models. The literature that reports an

out-of-sample root mean squared error (RMSE) shows a wide range for the

predictive accuracy (Wentland et al. 2021, Davis et al. 2021, Larson & Shui

2022, Clapp et al. 2021, Albouy et al. 2018). The substantial heterogeneity

in predictive accuracy further illustrates the difficulty in predicting land

prices. In contrast to this literature, we also apply a spatial-leave-one-out-

cross-validation that avoids underestimation of the prediction error due to

spatial autocorrelation. In addition we also quantify the predictive uncer-

tainty thereby giving further insight about the quality of our prediction.

The paper is structured as follows. In Section 2 we provide a deeper

discussion of existing land valuation models. We describe the data that we

will use in Section 3 and the methodology in Section 4. The results are

presented in Section 5.
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2 Background on land valuation

The existing literature has taken different approaches to appraise land.

For land underneath improvements, there are three different methods to

assess the value of the land. First, the teardown approach which infers

the value from real estate purchased with the objective to demolish the

existing improvement on the plot (Gedal & Ellen 2018, Dye & McMillen

2007). However, teardowns are usually sparse. They also might not be

representative of a more exhaustive set of parcels within an area. Besides

the problem of infrequent and heavily localized transactions, this approach

also ignores the potentially high costs of demolition (Clapp & Lindenthal

2020).

The second approach is the residual approach which derives land value

from the difference between the total market value of the property and the

depreciated cost of replacing the improvement on the parcel (Larson & Shui

2022, Davis et al. 2021, Davis & Palumbo 2008). Withal, demolition costs are

not always available. Moreover, this approach makes the assumption that

each component of the total residential real estate evolves independently.

Clapp et al. (2021) argues that this does not hold for urban land as its value

depends heavily on surrounding infrastructure. They also point out that

the real-world application of this approach is flawed as it is only applicable

to relatively new improvements.

Third, there is the hedonic approach which assesses the land value through

running a regression of the sales price of the property on land and improve-

ment characteristics (Kuminoff & Pope 2013, Diewert et al. 2015). Yet, he-

donic approaches for land underneath improvements tend to attribute the

land value solely to the marginal contribution of the surface of the plot

and fixed effects per municipality (Kuminoff & Pope 2013, Wentland et al.

2020). Often, distance to amenities and access is ignored. Approaches for

estimating vacant land range from basic hedonic regressions (Barr et al.

2018, Combes et al. 2019) to more advanced statistical techniques (Albouy
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et al. 2018, Barr et al. 2018), often using a more exhaustive selection of lo-

cational covariates. Howbeit, there is no method that can address the dis-

cussed selection issues and unobserved covariates in a satisfactory manner.

A portion of the unexplained variation might be accounted for through the

inclusion of a spatial component to the linear predictor. Larson & Shui

(2022) applies a novel approach by using a spatial interpolation method

called Kriging, first used by Davis et al. (2021), to estimate vacant land

prices on an aggregated county-level. They found that the modelling of

a spatial relationships between counties improves their predictive power.

Basu & Thibodeau (1998) argues that regular hedonic models for hous-

ing prices are only more accurate if the unexplained variation of prices is

uncorrelated, otherwise spatial procedures are more suitable. Yet, the as-

sumption of knowing the true data generating spatial process is unrealistic.

Therefore, the inclusion of spatial random effects is crucial for increasing

the predictive quality of the model. In addition, assuming spatially uncor-

related error terms is not plausible for these kind of data and therefore, the

independence assumption is violated. This can lead to obtain confounding

parameter uncertainty estimates and therefore, report misleading results

(Fieberg et al. 2021). Despite this finding, most papers refrain from using

spatial methods. We believe that capturing spatial variation adds value.

Section 4 provides further reasoning for our approach. Papers such as

Wentland et al. (2021), Davis et al. (2021) strive to provide estimates at

a fine spatial level. Still, more granular fixed effects effects might lead to

overfitting since there are few observation per group (Wentland et al. 2021).

One way to mitigate this issue is to turn to Bayesian statistics as it miti-

gates the effect of potential outliers, as further explained in Section 4. One

example which applies Bayesian statistics to estimate land values is the pa-

per by Albouy et al. (2018). They apply an empirical Bayesian approach

rather than a full Bayesian approach for the sake of computational speed.

The downside of this approach is that it underestimates the uncertainty of

the posterior distribution for city- and time-specific effects through using

6



a fixed point estimate rather than a distribution. This defies one of the

major advantages of Bayesian statistics, the accurate quantification of un-

certainty. With recent developments in Bayesian statistics, such methods

such as R-INLA by Rue et al. (2009), offer a faster alternative than estab-

lished full-Bayesian methods, such as Markov Chain Monte Carlo, without

a loss in accuracy.

Moreover, empirical Bayes aims to choose the best value for the shrink-

age parameter for predicting the full data set. However, for the sake of

generalizability of the model, cross-validation is a better approach. It aims

to choose the value for the shrinkage parameter which is most appropriate

in predicting the validation set given a training set (Van Erp et al. 2019).

Thus, a regular cross-validation usually is better suited for a generaliza-

tion of the results, especially with regards to the evaluation of predictive

performance.

The last concern related to the complexity of land prices is the evaluation

of the predictive power. As the main goal of many papers is to give accu-

rate prediction of land values, a rigorous cross-validation is necessary. This

resampling method uses different partitions of the data to train a model on

several iterations and then test the predictive performance. The aim of this

technique is to raise flags to issues such as overfitting or selection bias.

The key is to evaluate the model’s performance on unknown data and its

ability to generalize to this data set (Browne 2000). Despite a quite sub-

stantial literature on land prices, very few papers evaluate the predictive

accuracy of their models. Metrics like the out-of-sample root mean squared

error (RMSE) are usually the standard values reported. For land prices, the

overall predictive performance of the models is moderate at best. Wentland

et al. (2021) uses Machine Learning techniques to reduce the out-of-sample

RMSE by 75% in comparison to regular hedonic approaches for land un-

derneath improvements. Also, for land underneath improvements, but

across counties, Davis et al. (2021) finds a median out-of-sample RMSE of

40%. Larson & Shui (2022) reports an out-of-sample value of 66% for the
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Kriging model for vacant land. Also, Clapp et al. (2021) obtains an in-

sample RMSE of 97% - 100% and an out-of-sample RMSE of 99% - 100%,

both for land underneath improvements. Albouy et al. (2018)’s analysis

yields an out-of-sample value between 97% and 128%, depending on the

covariates included. While Davis et al. (2021) and Larson & Shui (2022) use

an 80% - 20% split for training and test set, Albouy et al. (2018) applies a

more methodologically solid form of a leave-one-out cross-validation. The

other papers, however, do not reveal their strategy for predictive evalu-

ation. Again, the literature shows a wide range of RMSE value further

illustrating the difficulty in predicting land prices.

3 Data

For our analysis, we investigate both vacant and improved land in Bel-

gium. Our data combines different sources. The main strand of data is the

universe of sales transactions, obtained from the Belgian Federal Public

Service Finance. This data set contains information about sales of vacant

and improved plots. In our case, improved plots include only single-family

homes. For our analysis, we restrict the data set to the year 2018, as this se-

lection provides a lot of variation and the data quality drastically improved

after administrative changes in 2015 (Moerkerke 2017). The variables of in-

terest can be categorized as follows: Housing characteristics (number of

bedrooms, number of bathrooms, etc.), transaction characteristics (sales

price, date of transaction, etc.) and plot characteristics (surface, classifica-

tion of land, etc.).

While improved land is easy to identify in the data set, we need define

vacant land more carefully. We classify those parcels as vacant for which

the construction type is undefined, but the parcel is characterized as build-

ing land. Moreover, we exclude vacant land parcels which are either split

or assembled in the following years.
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For additional regressors, we join supplementary data sets: Open Street

Map (distances to amenities, water, etc.), Malaria Atlas Project (travel time

to nearest cities) (Weiss et al. 2018), the Belgian Statistical Office (Statbel,

additional covariates).

Our paper also takes the shape of the plot into account. In previous

work, Asabere & Harvey (1985) and Glumac et al. (2019) find that for ur-

ban land, more regular-shaped plots are sold at a premium while irreg-

ular shapes lead to a discounted sales price. However, regularity is diffi-

cult to assess: Existing papers account for the effect of shape in a mono-

dimensional approach (Glumac et al. 2019) or use opaque, somewhat arbi-

trary measures provided in the original data set (Asabere & Harvey 1985,

Gedal & Ellen 2018). Demetriou et al. (2013) proposes an index which in-

cludes different shape and boundary indices as a single metric will lead

to spurious classification of a plot. Following his idea loosely, we use the

following covariates in order to correctly assess the shape:

1. The number of vertices of the polygon: While the obvious desirable

number of vertices is four, a slightly larger number can still guarantee

a rather regular shape. A larger deviation, however, indicates a rather

complex polygon.

2. The standard deviation of angles at vertices: Both reflex and acute

angles can lead to a polygon of unattractive shape.

3. The standard deviation of the distance of vertices to the centroid of

the polygon: Assuming an ideal shape should be close to a square,

the vertices should lie on a circle whose center is the centroid of the

polygon.

4. The standard deviation of the edge length: Given the ideal shape of

a square, the edge length should not differ a lot.

5. The ratio of the bounding box: We calculate the ratio of the longer
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side to the shorter side of the bounding box. An ideal ratio amounts

to 1. The further away the value from 1, the less regular the shape.

While these indices only capture only one aspect of regularity, all of

them combined paint a comprehensive picture of whether a plot has a

desirable, rectangular shape. For the calculation of these metrics, we use

the official Cadaster shapefile of 2018. All of our data points are observed

at the centroid of the polygons, thus we obtain latitude and longitude of

each observation. All covariates which relate to the plot, such as measures

of regularity or surface, are available for every parcel. However, some

covariates are only available for improved land. For a full list of covariates,

see Table 1.

Our data set comprises 8,720 observations of vacant land and 73,846

parcels of improved land. However, we still need to cull extreme values

which might e.g. arise from misclassification of vacant agricultural land as

vacant building land. In order to remove outliers, we restrict the range of

vacant land prices to the one of improved land which reduces the number

of observations to 6,077. Our analysis is run on the reduced sample, but

the results for the full sample are available in the Appendix (see Tables 12,

14, 13).

The average improved land costs 246,050€ whereas vacant land aver-

ages to 176,720€. Tables 2 and 3 show the skewed distribution of vacant

land prices in comparison to improved land prices. Furthermore, vacant

land parcels are on average larger (1,386.93 m2) than improved land parcels

(553.61 m2). In terms of regularity, the standard deviation of the edge

length stands out. There is much more variance in the edge length of va-

cant plots as compared to improved plots. Also, vacant land appears to be

further away from any sort of amenity. Figure 1 illustrates the difference

in both data sets: Whereas vacant land is sparse, particularly in Wallo-

nia, and does not display a strong regional variation in prices, we have a

large amount of improved land with peaks in price at the coast, Flemish

10



metropolitan areas and the region bordering Luxembourg.

4 Methodology

4.1 Modeling land values

In this section, we lay the methodological groundwork for our analysis. We

use the most common method for land appraisal (Colwell et al. 1983), the

market approach, in order compare similar plots. This approach is based

on hedonic price models.

We apply this approach to explore the predictive performance for differ-

ent models for vacant land, land underneath improvements and improved

land. For all scenarios, we use a linear model as the baseline. Furthermore,

we extend our models by a spatial component in the linear predictor. Ob-

servations which lie closely together in space are likely to display similar

price values. This could lead to have a high degree of residual spatial auto-

correlation if the variation of the prices is not mostly explained by the fixed

effects. A spatial model will consider this spatial autocorrelation in order

to disentangle the general trend, driven by covariates without a spatial

structure, from the exclusively spatial random variation. Thus, this allows

us to account for the missed covariates which are spatially correlated. Over

the last decades, real estate economics have put more emphasis on the in-

clusion of a spatial component (Clapp et al. 2002, Moralı & Yılmaz 2020)

as ignoring it violates model assumptions. The spatial autocorrelation in

the error terms leads to a biased estimation of error variance. Whereas

regression coefficients might remain unbiased (Anselin & Griffith 1988),

recent findings suggest that this is not always the case (Dupont et al. 2022).

Through the violation of independence (Cressie 1993), significance tests

and assessments of model fit might be misleading. Also, the uncertainty

estimates might become unreliable (Anselin & Griffith 1988).

There are two exploratory approaches that are prevalent in the economic
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literature: K-nearest-neighbors (KNN) and Geographically Weighted Re-

gression (GWR). KNN is a straightforward, deterministic method as it

finds the closest neighbors in space to a certain observation. One assumes

that points far away have less influence than close points. This approach is

e.g. used to assess the impact of surrounding amenities on rents in Berlin

(Schäfer & Hirsch 2017). Bourassa et al. (2010) also uses a two-stage process

incorporating nearest neighbors’ residuals in the second stage to capture

spatial dependency. Yet, they find that classic geostatistical approaches

work better. The downsides of this approach include sensitivity to outliers,

limited applicability for sparse data and the disregard for spatial autocor-

relation (Longley et al. 2005). GWR (Brunsdon et al. 1998), however, takes

into account spatial autocorrelation and is one of the most popular ap-

proaches to take into account for spatial dependencies. Nevertheless, this

method has some shortcomings: GWR estimates a set of values of coeffi-

cients for every observation by using all data within a certain bandwidth

and weighting by distance. This makes results highly dependent on the

choice of the bandwidth. Land prices in Belgium - both vacant and im-

proved - are influenced by municipal and regional juridiction. Therefore, it

is more crucial to take into account the relationship between neighboring

municipalities rather than taking an average within a circle ignoring bor-

ders. GWR is more of an explanatory method to detect non-stationarity,

and its applicability as a prediction tool is controversial (Wheeler & Calder

2007). Also, since GWR computes location-specific parameter estimates, it

is a computationally intense method in comparison to other available tech-

niques. More appropriate techniques for including spatial components are

spline-based approaches (Wood 2011) or Bayesian models (Gelfand et al.

2003).
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4.2 Bayesian spatial models

In our case, we opt for the latter option as Bayesian models offer many

advantages. Bayesian statistics is an approach that involves updating prior

beliefs with new data. This type of models enjoys great popularity in spa-

tial settings (Besag et al. 1991, Cressie 1993, Diggle & Ribeiro 2008). One

benefit is the high flexibility, thereby allowing us to implement complex

models in a straightforward manner. An example of such complex models

involves hierarchical models, which are a commonly used to model spatial

structure. Rather than correcting the uncertainty between levels as required

in a frequentist setting, we can build the hierarchical structure directly into

the prior specification. Moreover, we can obtain a full representation of

parameter uncertainty through the posterior distribution. This is beneficial

for the quantification of uncertainty of estimates (Kruschke & Vanpaemel

2015). Another key advantage is that missing data and outliers are consid-

ered random variables, for whom we obtain a posterior distribution: As

we estimate missing data through the posterior distribution, we can ob-

tain estimates for, e.g. a municipality where we do not observe any vacant

land, through the sales in other municipalities. Also in the case of outliers,

the advantage of this method is evident: Rather than point-estimating an

outlier as in a frequentist method, the Bayesian approach updates its prior

belief, e.g. based on other municipalities, to take this observation to a

certain degree into account and thus, mitigates its effect.

Due to our Bayesian framework, all parameters are considered random.

Therefore, the typical frequentist terminology of fixed and random effects

no longer holds. In order to keep the terminology accurate, we will use the

Bayesian definition of these effects. In the Bayesian setting, a fixed effect

is for covariates which affects all observations in the same way. It usually

has a vague prior, and we estimate each parameter independently. On the

other hand, a random effect serves the purpose of introducing additional

structure by modeling the parameters for each level as being drawn from a
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distribution. Random effects take into account variation and usually have

a more informative prior distribution. In our case, we use spatial random

effects to model spatial structure or differences between municipalities. In

our spatial models, we have structured random effects and unstructured

random effects. Structured random effects can capture spatial or tempo-

ral dependencies. The spatially structured effect can uncover remaining

spatial structure that is unexplained by the model as long as the structure

adheres to Tobler’s first law of geography: “everything is related to every-

thing else, but near things are more related than distant things.” (Tobler

1970). Unstructured effects allow us to model unstructured variability via

e.g. an iid-normal effect. Moreover, our models also contain an unstruc-

tured effect which can be considered as a classical error term. This error

term captures e.g. measurement errors or the effect of covariates which are

weakly correlated spatially.

4.3 Integrated Nested Laplace Approach

For the implementation of our Bayesian framework, we choose the Inte-

grated Nested Laplace Approach (INLA) (Rue et al. 2009). This method

applies numerical integration and Laplace approximations for approximate

Bayesian inference and is implemented in the R package R-INLA. The ad-

vantages of R-INLA lie in the ability to accommodate a large class of mod-

els (e.g. Generalized Linear Mixed Models or Generalized Additive Mixed

Models) (Rue et al. 2009) and also in computational speed. R-INLA is often

faster than approaches relying on Markov Chain Monte Carlo (MCMC) al-

gorithms and also provides diagnostic metrics which are straightforward

to interpret and reproducible (Wang et al. 2018). Over the last decade,

R-INLA has grown to be an established method in environmental statistics

(Crewe & McCracken 2015, Bowler et al. 2015) and for disease mapping

(Python et al. 2021, Bhatt et al. 2015), but it remains vastly unknown in real

estate economics. For details on the method, see Rue et al. (2009). In this
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section, we only focus on the pivotal building blocks of R-INLA for spatial

models.

A baseline spatial model can be described as follows : The data yi are

conditionally independent given the predictor ηi

yi|ηi,θ0 ∼ π(yi|ηi,θ0), (1)

where θ0 is the first part of the set of hyperparameters, usually relating to

parameters of the selected likelihood π.

We define the predictor η as

ηi = β0 + Σk
j=1β jxij + ΣL

l=1uli (2)

, where β0 is the intercept, β describes the fixed effects of covariates x and

u denotes the random effects.

Also, the random vector u has a normally distributed prior:

u|θL ∼ N(0, Q (θL)
−1) (3)

The precision matrix Q depends on the hyperparameters θL (Bakka et al.

2018). We use two different types of spatial approaches in order to model

different kinds of land values: The Intrinsic Conditionally Autoregressive

(ICAR) model and the Stochastic Partial Differential Equations (SPDE) ap-

proach. While the former model deals with a discretely indexed spatial

component, the latter captures a continuous one.

4.4 Intrinsic Conditionally Autoregressive Model

Our first model specification deals with lattice data which describes data

usually observed within administrative boundaries. The spatial adjacency

is mostly expressed through a neighborhood matrix containing non-zero

values at the intersection of rows and columns of adjacent areas. This ma-
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trix serves the purpose of modeling spatially correlated random effects via

a multivariate Gaussian distribution whose precision matrix depends on

the neighborhood matrix. This normal distribution has the mean of the av-

eraged neighbors’ random effects, with variance proportional to one over

the number of neighbors so that a larger number of neighbors reduces vari-

ability (Besag 1974, Besag et al. 1991). In particular, this approach models

the random effect values ua on a set of regions a = 1 . . . m conditionally on

its neighboring regions. We define regions which share a common border

as neighbors. The conditional distribution for ua is

ua|u−a, τu ∼ N
(

1
da

∑
b∼a

ub,
1
da

1
τu

)
, (4)

where b ∼ a means that regions a and b are neighboring regions, da is the

number of neighbors and τu denotes the precision parameter. The joint

distribution is then described by

u|τu ∼ N
(

0,
1
τu

Q−1
)

, (5)

where Qab =

da, if a = b

−1 a ∼ b
(6)

(Bakka et al. 2018).

We apply the ICAR structure to random effects in models which use va-

cant land as the training set. The reasons are two-fold: On the one hand,

the results of the cross-validation suggests that a discretely indexed ran-

dom effect is more appropriate for vacant land than one with a continuous

index. On the other hand, vacant land is more dependent on municipal

jurisdiction than improved land as the administration determines the fu-

ture building potential of vacant land. Due to the skewed nature of the
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sales prices of vacant land (see Figure 2), we opt for a logistic distribution

rather than a Gaussian as it has heavier tails and thus, can better account

for extreme values. We set up the model as follows:

log(sales_pricei) ∼ Logistic(ηi, τ−1
ϵ )

E(ηi) = β0 + Σk
j=1β jxija + ua,

(7)

where the sales price of each parcel i follows a logistic distribution with

mean of the linear predictor ηi and precision τϵ. Furthermore, ua denotes

the random effect per municipality a. In order to assess the performance

of the spatial field, we compare the spatial model with the linear version:

log(sales_pricei) ∼ Logistic(ηi, τ−1
ϵ )

E(ηi) = β0 + Σk
j=1β jxija

(8)

4.5 Stochastic Partial Differential Equations

Our second model specification tackles continuously indexed spatial mod-

els. In this case, our precision matrix Q is in general no longer sparse

which renders computations unviable, especially for large data sets (Bakka

et al. 2018). Lindgren et al. (2011) proposes an approach where a Gaussian

field with a Matérn correlation, expressed as a Gaussian Markov Random

Field (GMRF), is the solution to a stochastic partial differential equation. A

GMRF is a discretely indexed Gaussian field whose full conditional distri-

butions depend only on a set of neighbours to each location. In our case,

we assume a stationary GMRF for simplicity. The related Matérn covari-

ance function is defined as:

Cov(ξ(si), ξ(sj)) =
σ2

ξ

Γ(λ)
21−λ(κ||si − sj||)λKλ(κ||si−sj||), (9)

where ||si − sj|| denotes the Euclidean distances between the two loca-

tions si, sj ∈ R2, σ2
ξ is the marginal variance of the Gaussian random field,
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Kλ is the modified Bessel function of second kind and of order λ > 0 which

quantifies the smoothness of the field and κ > 0 is the scaling parameter

related to the range ρξ which descries the distance between two locations

above we assume the spatial correlation to become negligible. Through the

representation of a Gaussian Field as a GMRF, we obtain a sparse represen-

tation of the spatial effect, making computation feasible. Another benefit

of the SPDE method is that allows to discretize the study area, even for for

irregularly distributed point data. For further details, see Lindgren et al.

(2011). We define our spatial random effect as ¸(s) ∼ N(0, Q(ˇ, øffl))
−1.

In this case, we apply the SPDE model for improved land. The logged

sales price follows a normal distribution (see 2). In order to take differ-

ences across municipalities into account, we add an iid - random effect per

municipality a. Again, the results from cross-validation, discussed in the

next section, suggest that this is the most appropriate model. This model

is defined in the following manner:

log(sales_pricei) ∼ N(ηi, τ−1
ϵ )

E(ηi) = β0 + Σk
j=1β jxija+

ξi(si, ρξ , σξ) + ζa,

(10)

where the sales price of parcel i follows a Gaussian with mean ηi and

precision τϵ. Moreover, si is location i, σ2
ϵ denotes the marginal variance

of the GMRF, ρϵ describes range of the GMRF and ζa stands for the iid

random effect per municipality.

The linear version of this model is:

log(sales_pricei) ∼ N(ηi, τ−1
ϵ )

E(ηi) = β0 + Σk
j=1β jxija

(11)
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4.6 Cross-validation

Cross-validation is one of the most commonly used resampling methods to

estimate the true prediction error of models and compare predictive per-

formance.

As alluded in the previous section, we rigorously cross-validate our mod-

els. We do not only apply regular Leave-one-out-cross-validation (LOOCV),

but we also apply Spatial-leave-one-out-cross-validation (SLOOCV).

The reason for spatially cross-validating a model lies in the high risk of

overfitting for complex models like ours (Lucas et al. 2020). Model selection

processes may choose excessively complex models leading to underestima-

tion of the prediction error (Mosteller & Tukey 1977). In particular, we are

exposed to a high risk of underestimating the model error if training and

testing sets are geographically close, but predictions take place far from

the training locations (Lucas et al. 2020). When the test set is drawn to be

close to the training set, the independence of both sets could be jeopardized

in the presence of spatial autocorrelation (Hastie et al. 2009). This would

lead to overly optimistic estimates of our prediction errors and might even

produce inaccurate conclusions (Roberts et al. 2017, Hastie et al. 2009).

Ignoring spatial structure when splitting into training and testing set

causes models to seem more reliable than they are. This allures us to have

more faith in the model’s predictive power than it deserves.

The procedure for SLOOCV is the following (Le Rest et al. 2014):

1. Remove one observation from the training set.

2. Remove all observation within a buffer. The remaining data points

constitute the training set.

3. Predict at the location of the removed observation.

These steps are repeated k-times with k being lower or equal to the number

of observations.
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5 Results

In a first step, we tackle three different tasks:

1. The comparison of predictive power between models for vacant and

improved land prices

2. The prediction of vacant land prices

3. The prediction of land prices underneath improvements and land

shares

For each of our tasks, we specify our models in two versions: One includ-

ing and another one excluding the spatial component in order to evaluate

the impact of spatial structure on predictive performance.

5.1 Comparison of vacant and improved land price models

5.1.1 Comparison of baseline models

While it is relatively straightforward to predict improved land, the predic-

tion of vacant land is more complicated. The reasons for this intricacy are

manifold: Not only is the land component more volatile in comparison to

the improvement component in residential land value, but the infrequent

transactions of vacant further complicate the prediction (?). Moreover, im-

proved land is usually transacted as a bundle of the land underneath the

improvement and the actual improvement (Clapp et al. 2021). The im-

provement characteristics themselves might also provide some indication

of the land value, such as larger houses with more bedrooms in affluent

areas. In order to illustrate the difference in predictive performance, we

first compare a model which estimates vacant land prices with a model

which estimates improved land prices.

We predict vacant land prices with the ICAR-method (Model 1) and im-

proved land prices with the SPDE-method (Model 2). For Model 1, we use
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all available covariates for vacant land and for Model 2, we extend this set

of covariates by the improvement-specific variables. Table 4 presents the re-

sults of the two models. For both models, the superiority of spatial models

in predictive performance in comparison to a regular linear specification

is evident: All classic metrics of predictive accuracy (Mean average error

(MAE), RMSE, Relative root mean squared error (rRMSE)) indicate lower

values for the model incorporating a spatial component. Moreover, the

goodness-of-fit is much lower for both models for the linear specifications.

Model 1 appears to benefit even stronger from the spatial component than

Model 2. It appears that the plot-specific covariates do not have a strong

impact, but that the spatial component captures quite a large portion of the

unexplained spatial variation.

When comparing the two models to each other, Model 2 exhibits a larger

R-squared and also a lower relative RMSE than Model 1. This illustrates

our assumption that it is easier to predict improved land than vacant land.

The reasons for this difference in predictive performance can stem from

multiple sources: On the one hand, the improved land data set is consid-

erably larger than the vacant land set. On the other hand, through the

improvement characteristics the model gains explanatory power (see also

Model 6 in Table 11). Therefore, the improvement might be the key com-

ponent which facilitates the prediction of improved land relative to vacant

land. Furthermore, a proportion of the unexplained variation in vacant

land prices might be due to unobserved factors which we can not capture

through a spatial structure. This could be e.g. a plot-specific covariate

which does not behave similarly to other plots close in space or a covariate

that is subject to temporal autocorrelation.

In order to cross-validate our results, we apply LOOCV and SLOOCV

with 400 iterations (for computational reasons). The radius for SLOOCV

was chosen as the ten-fold of the average distance between two points for

each data set, improved and vacant land. Through setting different radii

and comparing the results, we ensured that not too many nor too few
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points were removed. We compare the findings with the in-sample predic-

tions. For both data sets (vacant and improved land), we evaluate three

model specification: Linear regression, SPDE and ICAR. Table 5 summa-

rizes our validation through MAE, RMSE and rRMSE. For both improved

and vacant land, the linear specification performs the worst in all three

validation methods across every validation metric in comparison with any

of the spatial models. Moreover, the SLOOCV yields more prudent metrics

across all model specifications, validation methods and validation metrics.

The difference between SLOOCV and LOOCV is more notable for the case

of improved land. This implies that we might need to take the evaluation

of the LOOCV with a grain of salt due to potential overfitting. For va-

cant land, the two sampling validation approaches do not differ as starkly.

This might be due to a lower degree of residual autocorrelation. While for

improved land, SPDE yields a higher prediction accuracy than ICAR, the

opposite holds true for vacant land. The decrease in rRMSE for SPDE with

SLOOCV, the most conservative validation method, amounts to 18.9% in

comparison to the linear model. For vacant land, the increase for ICAR

equals 20.7%. The difference in SLOOCV between the best models for each

data sets indicates that the rRMSE for improved land is still 17.5% lower

than for vacant land. This further illustrates the difficulty of predicting

land prices. Improved land seems to require a fine spatial effect to take into

account the spatial variation resulting from clustering and variation within

municipalities. An ICAR would omit too much of the within-municipality

effect. However, vacant land calls for an ICAR specification to better ac-

count for variation between municipalities. The spatial field from an SPDE

would smooth too much of this variation due to the sparse spatial struc-

ture. For the case of SPDE for improved land and ICAR for vacant land, the

in-sample RMSE and rRMSE are higher in the in-sample validation than in

the cross-validation. Whereas the difference in the second case is of neg-

ligible size when taking the standard deviation of the observed data into

account, it has considerable size in the first one. The large difference for
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the SPDE model in comparison to the linear model stems from the fact that

the improved land faces a substantial amount of residual autocorrelation.

This could cause the LOOCV estimates to be overly optimistic.

In order to assess the quality of our predictions, it is not only necessary

to consider prediction accuracy, but also prediction uncertainty. Through

Bayesian statistics, we can easily evaluate the uncertainty of our predic-

tions. While most research is concerned with with predictive accuracy, pre-

dictive models can come short in quantifying predictive uncertainty. For

policy-makers, uncertainty measures are of particular interest as new data

might differ from the existing data due to sampling bias or non-stationarity

(Ovadia et al. 2019). Taking predictive uncertainty into account can help

to take more prudent decisions for zoning, approval of real estate loans or

assessment of tax bases. It is imperative to tell a cautionary tale about land

price assessment. Therefore, we compare the distribution of uncertainty

between our models to get a better understanding whether uncertainty

follows a similar pattern across models. We consider the density of the

predictive standard deviation (SD) divided by the predictive mean to ad-

just for outliers, obtained from the posterior distribution. Figure 3 displays

the results. At first sight, it might appear that the linear models have much

lower uncertainty than the spatial counterparts. However, recall that the

linear specification may violate the assumption of independence and leads

to estimates of uncertainty which are on average too small. Therefore,

our spatial models might give a more realistic estimation of uncertainty.

Through the inclusion of a spatial effect, the uncertainty becomes more

nuanced. While a part of the density concentration around a smaller un-

certainty is due to the higher sample size for Model 2, another part can

probably be accounted for through the strong spatial clustering of the de-

pendent variable coinciding with autocorrelation of the model, and a more

normal distribution of improved land prices. For Model 1, the variance of

the uncertainty is larger. This is probably due to the skewed distribution of

vacant land prices which cannot be easily captured through the model, the
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sparse spatial pattern which is difficult to account for, and the additional

unexplained non-spatial variation driving up uncertainty.

In order to further evaluate the distribution of predictive standard de-

viation, we use the Hellinger distance. This metric is commonly used in

information theory to measure similarity between two probability distribu-

tions, p and q, and is defined as υpq ∈ [0, 1]: when the measure is 0 the two

probability distributions are identical and when it is 1 they are completely

dissimilar. Moreover, we use the demeaned version of this metric, υ̃pq.

While υpq assesses the overlap between two distributions, υ̃pq evaluates the

overall similarity in shape between the two distributions. The first line of

Table 6 indicates that the distribution of the standard deviation of Model

2 and Model 1 do not overlap a lot. The similarity in shape is also not too

large (0.46). Thus, it appears that uncertainty for vacant land price models

and improved land price models might be driven by different factors.

5.1.2 Analysis of Market Thickness

To assess the difference between Model 2 and Model 1 more accurately

with respect to sample size and spatial autocorrelation, we conduct an

additional analysis. We explore how the spatial thickness of the market

impacts the predict performance. We take two samples of size n = 6077

(same size as vacant land). We expect that predictive uncertainty is lower

in a thick market. While the first sample is drawn randomly and exhibits

strong spatial clustering, the second sample contains the improved parcels

closest in space to the vacant ones, thus displaying spatial sparsity. We

hereon refer to Model 2 applied to the former as Model 2 clustered and ap-

plied to the latter Model 2 sparse. Table 7 shows that there is barely any

difference between both versions of Model 2 across all metrics. Table 8 il-

lustrates the results of the validation. We also look at a standard of spatial

autocorrelation, Moran’s I: It measures how one observation is similar to

the ones surrounding it. It is defined on [−1, 1], where -1 is perfect disper-
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sion, 0 is perfect randomness and 1 is perfect clustering of similar values.

While sales prices exhibit some level of positive autocorrelation between

parcels in all three data sets, it is much stronger for improved land and

somewhat similar for both subsets. For vacant land, the spatial autocor-

relation of prices is a bit higher on the municipality level (0.08 vs 0.06 on

parcel level). This suggests that municipal difference could matter more

than within-municipal differences.

There is no strong difference in in-sample metrics for both versions of

Model 2, but they both predict better than Model 2 with the full set of

improved land. For the two sampling methods, Model 2 clustered indicates

a better performance, potentially due to the stronger autocorrelation in

prices. This finding implies that the variation in sales prices are well cap-

tured through the spatial effect and the fixed effects in both versions of

Model 2. Again, even with a smaller set for improved land, Model 1 per-

forms worse than both versions of Model 2. Also, the metrics of LOOCV

for both versions of Model 2 are lower than the in-sample implying an

overly optimistic assessment of the predictive accuracy. The difference in

metrics between LOOCV and SLOOCV in comparison to the linear version

is of considerable size for both versions of Model 2, hinting at the presence

of residual spatial autocorrelation. Keep in mind that even though the

data for Model 1 and Model 2 sparse display a similar spatial pattern, this

does not imply similar autocorrelation of residuals. Considering the linear

specification, Model 2 clustered performs better than Model 2 sparse. Model

2 sparse appears to benefit more from the inclusion of a spatial field. This

suggests that the fixed effects of Model 2 sparse capture less of the spatial

variation. For Model 1, the predictive improvement also implies that the

fixed effects cannot explain much of the spatial variation, even to a lesser

extent than for Model 2 sparse. Sample size does not seem to drive the dif-

ference in performance between Model 1 and Model 2, rather it is due to

a different level of spatial autocorrelation and explanatory power of fixed

effects.
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For this task, we again consider the density of predictive uncertainty

across the models (see Figure 5). Model 2 clustered displays a high density

around low uncertainty. The skewed nature of the density plots suggests

that there are more outliers in comparison to Model 2 sparse which displays

a more normal distribution of uncertainty, albeit centered around a higher

level. The skewed shape of Model 2 clustered is probably due to some ex-

tent due to the stronger spatial autocorrelation. Figure 4 shows that SD

increases with distance from clustering and in spatially sparse regions as

expected. Furthermore, there is more variation in uncertainty for Model 1

further illustrating the difficulty of predicting land prices. The Hellinger

distance suggests that both versions of Model 2 exhibit a high similarity

in shape and some amount of overlap. Model 1 displays some similar-

ity in shape with both versions of Model 2, but less overlap with Model

2 clustered than with Model 2 sparse (see Table 9. In addition, we explore

the relationship between the predictive uncertainty between Model 1 and

Model 2 sparse. We find a strong (0.82) correlation between the two uncer-

tainty (see Figure 6). We interpret this finding as an indication that land is

the main driver of uncertainty in prediction of real estate values. While the

non-spatial residual variation amounts to 0.43 on average for Model 1, it

equals 0.07 for Model 2 sparse. This suggests that vacant land prices display

a higher degree of non-spatial variation. In this case, we find predictive

accuracy and predictive uncertainty are related to each other.

Additionally, we investigate the impact of regularity of parcel shapes on

predictive uncertainty. For this, we define a non-parametric index:

ψi =
Σl

rRri

max(Σl
rRri)− min(Σl

rRri)
, (12)

where Rri is the rank of regularity measure r = 1 . . . 5 of plot i. ψi is normal-

ized to a range of [0, 1] such that 1 means the most regular shape (a perfect

square) and 0 is a polygon of irregular shape.Figure 7 shows that there is
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no large difference in the regularity across the three data sets. Taking the

predictive uncertainty into account, Figure 8 displays a similar pattern for

the three data sets: The relationship between regularity and uncertainty is

U-shaped implying that very regular or irregular plots exhibit lower stan-

dard deviation in comparison to the remaining parcels. This implies that

we can be more certain about our predictive performance if the parcel has

an extraordinary shape in terms of regularity.

5.2 Prediction of vacant land prices

Considering the difficulty of observing and predicting vacant land, the

question arises whether we could use an improved land price model to

predict vacant land.

We therefore introduce two new models: Model 3 estimates the full data

set containing both vacant and improved land. Model 4 estimates only

improved land. Subsequently, we make use of these estimates to predict

vacant land. For these models, we set the improvement-specific covariates

equal 0 if the land in the training set is vacant and to their true value oth-

erwise. In the testing set, we also set the improvement-specific covariates

equal to 0 to create as-if vacant land. We then compare our findings with

the original model predicting vacant land, Model 1. Table 10 shows the

findings. Here, the spatial specification again performs overall better than

the linear one across all models, with the exception of ϕ in Model 4. For

both Model 3 and Model 4, the R-squared increases with the inclusion of

a spatial component. Overall, Model 1 appears to perform better across all

metrics in comparison to the other two models. Among the linear specifi-

cations, there is a negligible difference in R-squared for all models. Also,

the difference between the predictive metrics for Model 1 and the other

models is rather small in a linear setting. The larger difference and im-

provement in performance emerges from the specification of the spatial

component. This implies that the specification of the spatial structure is
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able to explain the unexplained variation better via the ICAR-specification

rather than through the SPDE-model. While Model 3 performs slightly bet-

ter through the additional vacant land in the training data, the difference

between Model 3 and Model 4 are no longer pronounced when including

the spatial component. Therefore, the results suggest that Model 1 is a

more suitable approach when predicting vacant land. Overall, Model 1

performs 10% better than Model 3 and 14% than Model 4, considering the

rRMSE. Thus, we should refrain from using an improved land price model

for vacant land. Spatial structure, explanatory power of covariates and

distribution of sales prices differ too much between vacant and improved

land as that an improved land price model could be appropriate. We have

more unexplained variation in the case of vacant land which we are simply

unable to account for.

In terms of uncertainty, we observe again that the linear models seem to

underestimate the uncertainty across all models (see Figure 9). The figure

shows that Model 3 and Model 4 yield lower predictive uncertainty than

Model 1. Model 3 and Model 4 are fairly certain about their predictions as

they were trained improved land or a combination of improved and vacant

land. In contrast, Model 1 displays a wider variation of uncertainty. Line

2-4 of Table 6 display the Hellinger distances. Model 3 and 4 are very

similar in shape and exhibit a large overlap. Model 1, however is fairly

different from both Model 5 and 6 and does not display a great deal of

overlap. Nonetheless, these findings require particular prudence as they

are misleading. The resulting spatial field assumes a much stronger spatial

autocorrelation than the one that is present in vacant land. Moreover, fixed

effects can explain more of the variation of improved land. Thus, using

the same fixed effects and spatial field of Model 3 or Model 4 yields overly

optimistic estimates with regards to uncertainty, unaware of the potential

bias caused through model mis-specification. Thus, we advise the reader

to always interpret uncertainty with caution as it is highly dependent on

accurate model specification and the correctness of assumptions. In this
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case, it is safer to give more attention to the in-sample validation.

In order to take advantage of the spatial analysis, we further investigate

the estimates obtained from the spatial field. Figure 10 displays the mean

and the standard deviation of the spatial fields of Model 1, Model 2 and

Model 3 as these models cover all different training sets. The plots of the

mean are in line with our expectations, especially for Model 2 and Model

3. Metropolitan areas, the coastline and the border region to Luxembourg

have a positive effect whereas Wallonia and in general, the east of the coun-

try displays a negative effect. For Model 1, the pattern is similar, albeit less

pronounced. There is a clear divide in the sign of the spatial effect between

Flanders and Wallonia. Moreover, in some municipalities, such as Quevy,

the fixed effects are notably inept to explain prices such that the process is

highly dominated by the spatial effect. Also, the spatial effect for Model 3

is slightly smoother due to the inclusion of vacant land. The spatial field

smooths more in order to account for the lower autocorrelation in vacant

land prices. With regards to the uncertainty, the standard deviation is a lot

higher in Wallonia, partly due to the sparse data. Overall, we observe that

uncertainty is low when the amount of observations is ample.

5.3 Prediction of land prices underneath improvements

Disentangling the value of residential property into an improvement ele-

ment and a land element is of paramount relevance for policy-makers. On

the one hand, it is essential to be able to break down the total value of a

property into the two building blocks for an accurate municipal tax base.

On the other hand, improvements and land constitute two different ele-

ments on national balance sheets. Besides, when valuating a property, the

decomposition in two components is pivotal as improvements depreciate

over time unlike land (Diewert et al. 2015).

However, despite the beliefs of the most adamant proponent of a land

tax, ?, the estimation of land underneath improvements is notoriously dif-
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ficult. We cannot assume that land underneath improvements behaves in a

similar manner as vacant land. ? show evidence that vacant land values is

not an appropriate proxy for land underneath improvement. According to

them, vacant parcels are sold at a premium in comparison to land under-

neath improvements due to unobserved differences between both types of

land.

In order to further investigate this finding, we assess two models esti-

mating land underneath improvements. Model 5 is trained on vacant land

via an ICAR-model and then predicts the land underneath improvement.

Model 6 is trained on improved land via an SPDE-model and also predicts

the land underneath improvement. For this endeavour, we use the full set

of covariates. For vacant land in the training set in Model 5, we set the

improvement-specific covariates equal to 0. We also do this for the test-

ing set in both models. The training set in Model 6, however, keeps the

observed properties of the improvement.

Table 11 displays the results. In this case, the spatial model trumps

the linear model in Model 6, but not necessarily in Model 5. One ex-

planation for this could be that the spatial effect in Model 5 is on a mu-

nicipality level and thus, smooths the spatial within-municipality varia-

tion of improved land prices too strongly. Furthermore, we observe that

the R-squared increases in Model 6. If we upgrade our model from con-

taining only plot-specific covariates to including a spatial component, the

model gains roughly as much explanatory power as if we were to add the

improvement-specific covariates. Since we compare the predictions with

the improvement-specific covariates equal to 0 to the true values which

take into account the real covariate values, the metrics of predictive perfor-

mance are a lot higher. Comparing the linear specification of Model 5 to

the spatial one of Model 6, there is no overly stark difference in the metrics

assessing predictive accuracy. The only exception is the R-squared. While

it may seem counterintuitive at first sight, RMSE and R-squared describe

two different things. R-squared is more concerned with the covariates ac-
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tually predicting, in contrast to the outcome variable merely having low

variance and being simple to predict, even without the covariate. The spa-

tial model appears to make poorer predictions in comparison to the linear

version. However, the higher R-squared implies a roughly constant bias,

potentially caused through the spatial field. The predictors appear to still

be somewhat able to explain the observed value. This is in line with our

hypothesis that the municipal effect in Model 5 captures the some of the

unexplained variation, but systematically wrong so in this case. More-

over, ϕ is also similar in both models. Since ϕ denotes the mean ratio of

predicted values to true values, we can conclude that, on average, land un-

derneath improvements makes up for 35-64% of the total residential value.

This finding is highly dependent on the model specification. While Model

6 indicates a better fit of the model to the data, the linear version of Model

5 suggest a more realistic land share. These results deserve additional

attention as we suspect that the land share varies with age of the improve-

ment and probably fluctuates across regions of different levels of affluence.

However, this investigation is beyond the scope of this paper. Due to to

the similarity in predictive metrics, we conclude that it is possible to pre-

dict land underneath improvements with a regular improved land price

model. It is not necessary to estimate via a vacant land price model. This

alleviates the struggle of estimating land underneath improvements when

there is no vacant land available. From our findings, opposing ?, vacant

land is a good enough proxy for land underneath improvement as regular

improved land.
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A Tables

Variable Description Source Improved Land only

regularity1 Standard deviation of the
edge length

Cadaster shapefile 2018

regularity2 Distance of vertices to
centroid of plot

Cadaster shapefile 2018

regularity3 Number of points Cadaster shapefile 2018
regularity4 Ratio of bounding box Cadaster shapefile 2018
regularity5 Standard deviation of angles

at vertices
Cadaster shapefile 2018

builtsurface Proportion of built surface per
municipality 2020

Statbel

log(population) Population per km2 in 2020
(logarithm)

Statbel

log(travel) Travel time to nearest city in
meters (logarithm)

Malaria Atlas Project

log(distance1) Distance to water in meters
(logarithm)

Open Street Map

log(distance2) Distance to amenities in
meters (logarithm)

Open Street Map

log(distance3) Distance to leisure location in
meters (logarithm)

Open Street Map

log(distance4) Distance to railway station in
meters (logarithm)

Open Street Map

upperfloors Number of stories Belgian Federal Public Service
Finance

x

log(salesprice) Sales price of plot in 1000€
(logarithm)

Belgian Federal Public Service
Finance

x

log(surface) Surface of the plot (logarithm) Belgian Federal Public Service
Finance

x

garages Number of garages Belgian Federal Public Service
Finance

x

bathrooms Number of bathrooms Belgian Federal Public Service
Finance

x

habitablerooms Number of habitable rooms Belgian Federal Public Service
Finance

x

housesurface Surface of the building Belgian Federal Public Service
Finance

x

age Age of the building Belgian Federal Public Service
Finance

x

facades Number of the facades of the
building

Belgian Federal Public Service
Finance

x

renovation 1 if building was renovated, 0
ow

Belgian Federal Public Service
Finance

x

centralheating 1 if building has central
heating, 0 ow

Belgian Federal Public Service
Finance

x

habitableattic 1 if building has habitable
attic, 0 ow

Belgian Federal Public Service
Finance

x

improvedland 1 if the data set contains
improved land, 0 ow

Belgian Federal Public Service
Finance

x

Table 1: Overview of the variables
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Statistic N Mean St. Dev. Min Median Max

builtsurface 6,077 212.87 98.31 16.82 197.38 578.16
distance1 6,077 459.90 339.48 0.00 382.43 2,898.89
distance2 6,077 353.65 324.00 2.56 254.15 3,733.05
distance3 6,077 1,159.09 899.12 26.38 906.46 6,594.09
distance4 6,077 4,030.10 3,640.87 51.26 2,989.10 29,056.02
population 6,077 1,189.43 1,456.55 0.00 772.00 26,613.00
regularity1 6,077 15.67 8.99 0.06 13.66 98.05
regularity2 6,077 3.72 4.89 0.0000 2.20 78.22
regularity3 6,077 8.65 6.50 4.00 7.00 318.00
regularity4 6,077 1.89 0.93 1.00 1.62 11.77
regularity5 6,077 36.46 12.93 0.23 40.48 79.79
salesprice 6,077 176.72 145.43 50.00 138.00 2,000.00
surface 6,077 1,386.93 4,948.07 14.00 720.00 255,931.00
travel 6,077 7.73 7.04 0.00 6.00 48.00

Table 2: Summary statistics for vacant land

Statistic N Mean St. Dev. Min Median Max

age 73,843 74.98 41.82 0.00 66.00 168.00
bathrooms 73,828 0.85 0.45 0.00 1.00 3.00
builtsurface 73,846 237.43 111.39 16.82 225.92 676.59
centralheating 73,846 0.63 0.48 0.00 1.00 1.00
distance1 73,846 449.16 334.56 0.00 368.88 3,104.41
distance2 73,846 280.47 295.04 1.04 187.44 4,336.79
distance3 73,846 922.88 850.43 4.21 654.07 8,639.20
distance4 73,846 3,059.84 3,207.96 19.38 1,947.87 32,668.09
facades 73,835 2.88 0.84 2.00 3.00 4.00
garages 73,785 0.68 0.60 0.00 1.00 5.00
habitableattic 73,846 0.35 0.48 0.00 0.00 1.00
habitablerooms 73,832 5.67 1.41 1.00 5.00 10.00
population 73,846 2,277.43 2,956.83 0.00 1,334.00 29,219.00
regularity1 73,846 9.85 7.28 0.00 7.79 91.52
regularity2 73,846 4.09 3.37 0.00 3.45 68.61
regularity3 73,846 10.58 4.85 4.00 10.00 561.00
regularity4 73,846 2.10 1.35 1.00 1.69 34.23
regularity5 73,846 41.93 11.18 0.11 45.52 124.06
renovation 73,846 0.29 0.45 0.00 0.00 1.00
salesprice 73,846 246.05 127.14 50.00 227.00 2,000.00
surface 73,846 553.61 550.37 7.00 360.00 4,000.00
surfaceuseful 73,846 163.26 58.45 16.00 155.00 1,745.00
travel 73,615 5.99 7.16 0.00 4.00 53.00
upperfloors 73,816 1.70 0.58 0.00 2.00 5.00

Note: A lower N indicates missing values.

Table 3: Summary statistics for improved land
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Specification Metric Model 1 Model 2
spatial MAE 59.57 48.97
linear MAE 74.54 64.22

spatial R2 0.43 0.67
linear R2 0.17 0.46

spatial ϕ 1.08 1.04
linear ϕ 1.12 1.07

spatial RMSE 120.55 86.85
linear RMSE 137.04 104.38

spatial rRMSE 0.83 0.68
linear rRMSE 0.94 0.82

Notes: All metrics reported relate to the testing set
and are in-sample. MAE: Mean average error, R2: R-
squared, ϕ: Average ratio of observed values to pre-
dicted values, RMSE: Root mean squared error, rRMSE:
Relative root mean squared error

Table 4: Prediction of vacant vs. improved land prices
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Data set Specification Validation MAE RMSE rRMSE

Improved
land

Linear
In-sample 64.22 104.38 0.82
LOOCV 75.34 105.04 0.85

SLOOCV 78.18 108.45 0.88

SPDE
In-sample 48.97 86.85 0.68
LOOCV 44.87 68.37 0.55

SLOOCV 54.71 91.99 0.74

ICAR LOOCV 49.06 75.30 0.61
SLOOCV 59.26 95.53 0.77

Vacant
land

Linear
In-sample 75.02 136.85 0.94
LOOCV 78.3 112.47 1.03

SLOOCV 82.44 115.18 1.05

SPDE LOOCV 64.81 96.82 0.88
SLOOCV 69.09 100.01 0.91

ICAR
In-sample 59.57 120.55 0.83
LOOCV 61.46 89.47 0.82

SLOOCV 67.61 95.41 0.87
Notes: analysis run on 400 randomly drawn observations for both Leave-

One-Out validations. In-sample relates to the metrics calculated on the testing
set in Table ??. LOOCV is regular Leave-One-Out-Cross-Validation whereas
SLOOCV is Spatial-Leave-One-Out-Cross-Validation. MAE: Mean average er-
ror, RMSE: Root mean squared error, rRMSE: Relative root mean squared error

Table 5: Validation of Model 1 and Model 2

Model υpq υ̃pq
p = Model 1, q = Model 2 0.89 0.46
p = Model 1, q = Model 3 0.72 0.40
p = Model 1, q = Model 4 0.71 0.41
p = Model 3, q = Model 4 0.04 0.01

Notes: vpq refers to the Hellinger distance be-
tween the SD of the predictions for Model p and
q. ṽpq refers to the Hellinger distance between the
demeaned SD of the predictions Model p and q.

Table 6: Hellinger Distance of the predic-
tive SD for Model 1, 3, 4
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Metric Model 2 clustered Model 2 sparse
MAE 47.24 48.88

R2 0.66 0.66
ϕ 1.04 1.04

RMSE 76.24 77.36
rRMSE 0.62 0.62

Notes: Two subsets were taken: A random draw of
n = 6077 from the improved land data set and a draw
of the improved land data set such that it selects im-
proved parcels closest in space to vacant parcels, also
n = 6077. Model 2 is then run on the first sub-
set (Model 2 clustered) and the second subset (Model
2 sparse).
All metrics reported relate to the testing set and are
in-sample. MAE: Mean average error, R2: R-squared,
ϕ: Average ratio of observed values to predicted val-
ues, RMSE: Root mean squared error, rRMSE: Relative
root mean squared error

Table 7: Prediction of improved land prices
on a subset
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Model Specification Validation MAE RMSE rRMSE Moran’s I

Model 1

Linear
In-sample 75.02 136.85 0.94 0.06
LOOCV 78.3 112.47 1.03

SLOOCV 82.44 115.18 1.05

SPDE LOOCV 64.81 96.82 0.88
SLOOCV 69.09 100.01 0.91

ICAR
In-sample 59.57 120.55 0.83
LOOCV 61.46 89.47 0.82

SLOOCV 67.61 95.41 0.87

Model 2 clustered

Linear
In-sample 56.83 87.06 0.71 0.29
LOOCV 60.02 94.88 0.66

SLOOCV 64.22 104.05 0.73

SPDE
In-sample 47.24 76.24 0.62
LOOCV 49.98 80.58 0.56

SLOOCV 56.84 86.58 0.70

Model 2 sparse

Linear
In-sample 63.36 95.13 0.76 0.23
LOOCV 62.22 90.52 0.70

SLOOCV 64.16 94.58 0.79

SPDE
In-sample 48.88 77.36 0.62
LOOCV 47.14 66.93 0.52

SLOOCV 56.47 86.86 0.73
Notes: Two subsets were taken: A random draw of n = 6077 from the improved land data set and

a draw of the improved land data set such that it selects improved parcels closest in space to vacant
parcels, also n = 6077. Model 2 is then run on the first subset (Model 2 clustered) and the second subset
(Model 2 sparse).
analysis run on 400 randomly drawn observations for both Leave-One-Out validations. In-sample re-
lates to the metrics calculated on the testing set in Table 7. LOOCV is regular Leave-One-Out-Cross-
Validation whereas SLOOCV is Spatial-Leave-One-Out-Cross-Validation. MAE: Mean average error,
RMSE: Root mean squared error, rRMSE: Relative root mean squared error

Table 8: Validation of Model 1, Model 2 sparse, Model 2 clustered

45



Model υpq υ̃pq
p = Model 1, q = Model 2 (sparse) 0.50 0.39

p = Model 1, q = Model 2 (clustered) 0.78 0.42
p = Model 2 (sparse), q = Model 2 (clustered) 0.6 0.09

Notes: vpq refers to the Hellinger distance between the SD of the predic-
tions for Model p and q. ṽpq refers to the Hellinger distance between the
demeaned SD of the predictions Model p and q.

Table 9: Hellinger Distance of the predictive SD for Model 1,
Model 2 sparse, Model 2 clustered

Specification Metric Model 1 Model 3 Model 4
spatial MAE 59.57 68.97 71.10
linear MAE 75.02 76.99 78.41

spatial R2 0.43 0.35 0.30
linear R2 0.17 0.16 0.16

spatial ϕ 1.08 1.11 1.08
linear ϕ 1.14 1.14 0.99

spatial RMSE 120.55 130.43 134.18
linear RMSE 136.85 138.35 145.19

spatial rRMSE 0.83 0.92 0.95
linear rRMSE 0.94 0.98 1.02

Notes: All metrics reported relate to the testing set and are in-
sample. MAE: Mean average error, R2: R-squared, ϕ: Average ratio
of observed values to predicted values, RMSE: Root mean squared
error, rRMSE: Relative root mean squared error

Table 10: Prediction of vacant land prices
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Specification Metric Model 5 Model 6
spatial MAE 125.43 115.57
linear MAE 120.05 127.26

spatial R2 0.31 0.45
linear R2 0.18 0.16

spatial ϕ 0.58 0.64
linear ϕ 0.35 0.64

spatial RMSE 164.14 155.19
linear RMSE 161.57 171.54

spatial rRMSE 1.29 1.22
linear rRMSE 1.27 1.35

Notes: All metrics reported relate to the testing set
and are in-sample. MAE: Mean average error, R2: R-
squared, ϕ: Average ratio of observed values to pre-
dicted values, RMSE: Root mean squared error, rRMSE:
Relative root mean squared error

Table 11: Prediction of land prices underneath
improvement
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B Pictures

(a) Vacant land (b) Improved land

Figure 1: Land prices across Belgium
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Figure 2: Histograms of land prices on the log-scale
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Figure 4: Predictive SD for sparse and clustered subset of improved land
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C Additional results

Specification Metric Model 1 Model 2
spatial MAE 75.40 48.97
linear MAE 85.56 64.22

spatial R2 0.52 0.67
linear R2 0.43 0.46

spatial ϕ 3.24 1.04
linear ϕ 3.19 1.07

spatial RMSE 315.33 86.85
linear RMSE 319.52 104.38

spatial rRMSE 0.96 0.68
linear rRMSE 0.98 0.82

Notes: Analysis run on the full data set with outliers
included. All metrics reported relate to the testing set
and are in-sample. MAE: Mean average error, R2: R-
squared, ϕ: Average ratio of observed values to pre-
dicted values, RMSE: Root mean squared error, rRMSE:
Relative root mean squared error

Table 12: Prediction of vacant land vs. improved land prices - full data se
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Specification Metric Model 1 Model 3 Model 4
spatial MAE 75.40 86.50 86.59
linear MAE 85.56 91.00 90.50

spatial R2 0.52 0.51 0.30
linear R2 0.43 0.43 0.33

spatial ϕ 3.24 3.77 15.84
linear ϕ 3.19 4.20 15.12

spatial RMSE 315.33 324.25 319.78
linear RMSE 319.52 327.86 323.47

spatial rRMSE 0.96 0.99 0.98
linear rRMSE 0.98 1.00 0.99

Notes: Analysis run on the full data set with outliers included. All
metrics reported relate to the testing set and are in-sample. MAE:
Mean average error, R2: R-squared, ϕ: Average ratio of observed
values to predicted values, RMSE: Root mean squared error, rRMSE:
Relative root mean squared error

Table 13: Prediction of vacant land prices - full data se

Specification Metric Model 5 Model 6
spatial MAE 168.12 115.57
linear MAE 176.36 127.25

spatial R2 0.34 0.45
linear R2 0.25 0.16

spatial ϕ 0.33 0.64
linear ϕ 0.31 0.64

spatial RMSE 199.07 155.19
linear RMSE 208.67 171.54

spatial rRMSE 1.57 1.22
linear rRMSE 1.64 1.35

Notes: Analysis run on the full data set with outliers
included. All metrics reported relate to the testing set
and are in-sample. MAE: Mean average error, R2: R-
squared, ϕ: Average ratio of observed values to pre-
dicted values, RMSE: Root mean squared error, rRMSE:
Relative root mean squared error

Table 14: Prediction of land prices underneath
improvement - full data set

54


