

MEASURING THE EFFECTS OF BRAND MIX IN RETAIL RENTS: A CASE STUDY ISTANBUL

Gözde Karahan, PhD Candidate, İTÜ

Assoc. Prof. Dr. Kerem Yavuz Arslanlı, İTÜ

28th ERES Annual Conference 2022

24 June 2022

TABLE OF CONTENT

01	PROBLEM	03
02	LITERATURE	04
03	DATA	05
04	METHODOLOGY	09
05	ANALYSIS	12
06	RESULTS	14
07	REFERENCES	19

01 | PROBLEM

POINTS OF A RETAIL BRAND OFTEN LOCATED ON RETAIL STREETS

Source: Maptriks GIS tool

Choosing a location on Retail Streets means **being next to many other brands**.

This allows you to reach **more users and foot traffic**. And of course, this costs firms **higher rents**.

It is very difficult to predict the rents on the retail streets.

What if it is necessary to predict the whole of Turkey?

Source: Maptriks GIS tool

02 | LITERATUR REVIEW

S viou Ð -S ۵. Φ Ο S S Φ 2 0 σ σ +-Φ σ > ~

Author	Publish Year	Study Term	Study Area	Variables
Zhang et all.	2020	1996 - 2011	Netherlands	Rental Area, Brand Mix, Distantanceto transportation, Age
Jeong and Kim	2007	May 2003	96 Trade Areas in South Korea	Volume of Passing Pedestrians (as demand part) and store number (as supply part)
Koster et all.	2019	2003-2015	Netherlands	Number of Passing Pedestrians (as demand part) and vacancy rate (as supply part)
Nase et all.	2016	1994-2019	Belfast City	Urban design quality
Liang and Wilhelmsson	2011	August 2009	Shangai	Location, Rental Area, Age
Seo et all.	2019	2014	Phoenix	Distance from networks
Han and Kim	2014	Q1 2011	Central Cities in South Korea	Location (Floor), Area (City Center or Not) Are Rental Area

03 | DATA

DATA COLLECTION

- Dataset obtained from sahibinden.com in May 2021.
- **16822** First stage data: covers all Turkey and all commercial posts
- **6865** Limited data: within the borders of Istanbul Province
- **2852** Retail areas with a maximum of two floors and accessible from the street

DATA SOURCE

sahibinden.com is a sales/rental advertisement site established in 2000. sahibinden.com is the market leader in its field.

Real estate is the biggest category on the website and 844,300 real estate sales/lease advertisements are listed as of June 2022 on sahibinden.com.

Location Occuracy

Checks

03 | DATA

DATA COLLECTION

Observations were mapped using coordinates 🛛 🗲

04 | DATA

The following variables in dataset were included in the study;

Monthly Asking Rent (TL/sqm/month)

Gross Lease Area (sqm)

Location (Coordinates, for catchment areas)

Floor Location and Number of Floors

Building Age

Number of Public Buildings and Number of Transportation Stations

Brand Mix Index

03 | DATA

Descriptive Analysis

	Rent	Floor Location	No of Floor	GLA	Age	No of Public Building	No of Station	Brand Mix Index
Min. :	3.00	0.00	0.00	4.00	1.00	0.00	0.00	0.13
1st Qu.:	25.00	1.00	1.00	80.00	1.00	1.00	2.00	0.27
Median :	44.00	1.00	1.00	150.00	15.00	15.00	4.00	0.35
Mean :	84.33	0.86	0.93	266.30	16.68	16.68	4.63	0.39
3rd Qu.:	90.00	1.00	1.00	300.00	29.00	4.00	6.00	0.45
Max. :	1500.00	1.00	1.00	5200.00	100.00	25.00	58.00	1.00

04 | METHODOLOGY

Research question: Can data linked to the accessible environment of the candidate point also be used for rent estimation?

Hypothesis: Brands or brand mix within access area of the candidate point affect the rental value.

04 | METHODOLOGY

DATA PROCESSING

Floor Location and Number of Floors Labelling

Floor Location

Number of Floor

Floor Location	Value
1st Floor (Yüksek Giriş)	0
Ground Floor	1
Basement	0

No of Floor	Value
One Floor	1
Ground & 1st Floor	0
Ground & Mezzanine	0
Ground & Garden	0
Ground & Basement	0

04 | METHODOLOGY

DATA PROCESSING

Brand Mix Index

To measure the brand mix of a shopping street, sector classification was made using NACE codes. In the analysis, 10 different categories were created according to NACE codes*.

Herfindahl Index was used to define Brand Mix.

The highest value in the Herfindahl index is 1. While the Index is at its highest level, it is in the same NACE classification of all retail properties in the catchment area.

200 mt Catchment Area 200 mt Euclidean Distance

*The category list is given in Appendix 1.

**The Herfindahl Index has been previously used to measure brand or tenant mix. See, e.g., Des Rosiers et al. (2009), Ambrose et al. (2016) and Zhang et al. (2020)

05 | ANALYSIS

Not: Overall Trend = the overall trend of the log function of the Monthly Unit Rent, GLA = log function of Gross Leaseble Area, hhi = Herfindahl Index

05 | ANALYSIS

13//17

05 | ANALYSIS

Not: UnitRent= log function of the Monthly Unit Rent, floorloc = Floor Location, nooffloor = Number of Floor, GLA = log function of Gross Leaseble Area, Age = Building Age, noofpublic = Number of Public Building, noofstation = Number of Transpotation Station, hhi = Herfindahl Index

Correlation Matrix

06 | RESULTS

HEDONIC MODEL

 $[Y_{t} = \beta_{0} + \beta_{1}X_{1t} + \beta_{2}X_{2t} + \beta_{3}X_{3t} + \beta_{4}X_{4t} + \beta_{5}X_{5t} + \beta_{6}X_{6t} + \beta_{7}X_{7t}]$

Y = Unit Rent = log function of the Monthly Unit Rent

X1 = GLA = log function of Gross Leasable Area, X2 = age = Building Age, X3 = hhi = Herfindahl Index for Brand Mix,

X4 = noofstation = Number of Transportation Station, X5 = noofpublic = Number of Public Building,

X6 = floorloc = Floor Location, X7 = nooffloor = Number of Floor

Residuals:	Min	1Q	Median	3Q	Max
	-3,1276	-0,6195	-0,0904	0,4997	3,3815
Coefficients:					
	Estimate	Std. Error	t value	Pr(> †)	
(Intercept)	3,907271	0,118772	32,912	<2e-16	***
GLA	-0,141115	0,016062	-8,786	<2e-16	***
age	-0,003734	0,001073	-3,481	0,000508	***
hhi	0,122756	0,098109	1,251	0,210968	
noofstation	0,025358	0,004308	5,887	5,45e-09	***
noofpublic	0,075487	0,005123	14,735	<2e-16	***
floorloc	0,423889	0,042806	9,902	<2e-16	***
nooffloor	0,061590	0,068574	0,898	0,369191	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0,363 on 2606 degrees of freedom Multiple R-squared: 0,1952 Adjusted R-squared: 0,1931 F-statistic: 90,31 on 7 and 2606 DF, p-value: <2,2e-16

06 | RESULTS

- As the gross leasable area grows, unit rent levels are negatively affected. A 10% increase in GLA reduces Unit Rent by 1,3%.
- As the age of the building increases, rental levels are negatively affected. A year increase in buildings' age reduces Unit Rent by 0,4%.
- Being close to public transport stations positively affects the unit rent. Adding a public transport station in the catchment area would increase Unit Rent by $e_{0.025}-1 = 2,6\%$.
- Being in the area where public institutions are concentrated has a positive effect on the unit rent. Adding a public building in the catchment area would increase Unit Rent by e^0,075 -1 = 7,8%.
- Being on the ground floor has a positive effect on store rents. Being at street level creates a 52,8% increase in Unit Rent.

06 | RESULTS

- Being on a single floor affects the rent positively if the store is at the entrance level from the street. However, according to the model outputs, the number of floors of the store is not a significant variable for predicting the Unit Rent.
- The brand mix index produced with the Herfindahl Index was not significant predictor of unit rent. However, as the index grows, the unit rent tends to increase. It should also be taken into account that the tendency to aggregation rather than brand mix may have a positive effect on rent.
- The model can be tried again by producing a brand mix index with alternative indexes (eg Shannon Index). In general, the model does not statistically significant. The model can be updated with the distance to public institutions and public transport.

THANK YOU

Gözde Karahan

karahang 16@itu.edu.tr gzdkarahan@gmail.com

07 | REFERENCES

- Ambrose, B., Shafer, M., Yildirim, Y. (2016), "The impact of tenant diversification on spreads and default rates for mortgages on retail properties ", Journal of Real Estate Finance and Economics, 56(1), 1–32
- Jeong, S. Y. and Kim J.(2007), "The Effect of Passing Pedestrians Characteristics on Retail Rents", 12th AsRES International Conference, China.
- Koster H. R. A., Pasidis I. and Ommeren J.V. (2019), "Shopping externalities and retail concentration: Evidence from Dutch shopping streets ", Journal of Urban Economics.
- Chung Y. Y., (2011), "The impact of a pedestrianization scheme on retail rent: an empirical test in Hong Kong ", Journal of Place Management and Development, Vol. 4 Iss 3 pp. 231 242.
- Des Rosiers, F., Theriault, M., Lavoie, C. (2009). "Retail concentration and shopping center rents-a comparison of two cities ", Journal of Real Estate Research, 31(2), 165–208.
- Nase I., Berry J. and Adair A, (2013), "Hedonic modelling of high street retail properties: a quality design perspective ", Journal of Property Investment & Finance, Vol. 31 Iss 2 pp. 160 178.
- Liang, J. and Wilhelmsson, M. (2011), "The value of retail rents with regression models: a case study of Shanghai", Journal of Property Investment & Finance, Vol. 29 No. 6, pp. 630-643.
- Seo, K., Salon, D., Kuby, M. and Golub, A. (2019), "Hedonic modeling of commercial property values: distance decay from the links and nodes of rail and highway infrastructure, Transportation (46)6
- Han, J. and Kim K. (2014), "An Analysis on Rent Determinants of Retail Property : Focusing on Wholesale and Retail Services" 3rd International Conference on Management, Behavioral Sciences and Economics Issues (ICMBSE'2014), Singapore
- Zhang, S., Duijn, M. And Vlist A. J. (2020), "Tenant Mix and Retail Rents in High Street Shopping Districts", Journal of Real Estate Finance & Economics.