

INVESTIGATION OF THE EFFECT OF CDS PREMIUMS ON HOUSING PRICES

28th ANNUAL CONFERENCE OF THE EUROPEAN REAL ESTATE SOCIETY

Aybala Demir

Dr. Kerem Yavuz Arslanlı

Milan

25.06.2022

CONTENTS

- 0 1 PURPOSE OF THE STUDY
- 0 2 CREDIT DEFAULT SWAPS
- 0 3 LITERATURE REVIEW
- 04 VARIABLES
- 0 5 METHOD
- 0 6 CONCLUSION

PURPOSE OF THE STUDY

1. To determine the factors affecting Turkey 's CDS premium.

2. How Turkey's CDS Premium affects the housing prices

3. How much the increase in CDS will affect the housing prices.

- "Credit Default Swaps" briefly CDSs in its most basic terms, is the securitization of insurance contracts that protect the investor against the risk of non-payment of the loan.
- In return for this insurance, a portion of the expected return on the investment is paid as a premium.
- CDS contracts can be created for debt securities of both companies and countries. The greater the default risk of the borrower, the higher the CDS premiums.
- CDSs cover risks such as bankruptcy, credit downgrade, and default.
- While CDS maturities are between 1 and 10 years, the most frequently traded CDSs is 5 years. (Schönbucher 2003, s.15-17)

LITERATURE REVIEW

Author	Method	Variables	Conclusions
Branford, CJ. Holmberg. (2010). Determinants of Sovereign Credit Default Swap Spreads for PIIGS.	Regression Analysis	GDP growth rate, inflation rate, unemployment rate, gross debt stock.	 Variable with the greatest effect on CDS was the unemployment rate, and the variable with the least effect was the inflation rate. Examined countries; Portugal, Italy, Ireland, Greece, Spain.
Kılcı (2017). Evaluation of the relationship between CDS premiums and a country's credit risk; Turkey example.	Stationarity levels of time series, ADF, PP, and ZA Unit- Root Tests. Toda- Yamamoto Causality Test.	inflation, unemployment rate, growth rate, real exchange rate, banking sector capital adequacy ratio and BIST 30 variables from financial indicators. (2010–2016).	 The relationship between Turkey's 5-year CDS premiums and macroeconomic indicators such as growth, inflation, unemployment, and current account deficit is weak. Long-term relationships were found between the real effective exchange rate and financial indicators such as banking sector capital adequacy, non-performing loans/total loans, BIST 30 values, and CDS premiums. It was observed that the banking sector was especially effective in the change in Turkey's CDS premiums.
Koy(2014). An Empirical Study on Credit Default Swaps' Spreads and Bond Spreads.	Unit Root Test and Granger causality analysis.	Credit Default Swap, Euro- bond premiums. (Jan 2009-Nov 2012)	• The change in CDS premiums directs the change in Eurobond premiums. It has been concluded that the two data are in mutual interaction.

Local variables:

- Growth rates
- Real effective exchange rate
- Stocks market
- Inflation
- Bond yields
- Risk appetite
- Interest rates
- External debt balance.

Global variables:

- VIX
- S&P 500
- US bond market.
- NASDAQ
- Gold

LITERATURE REVIEW

. RE	DEC		ANK ON
ê î E	KED		INUN
	European Real	Estate Societ	y Sector

Author	Method	Variables	Conclusions			
Fontana-Schleicher (2016). An analysis of euro area sovereign CDS and their relation with government bonds.	Regression Analysis, time series	Bonds with a ten year maturity, CDS premiums and risk-free interest rate, risk perception of investors, external debt and iTraxx index. (2006-2010)	 The risk appetites of the investors have a strong effect on the borrowing costs of the countries. The decreasing risk appetite caused significant increases in CDS premiums. Examined countries; Austria, Belgium, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal and Spain. 			
Longstaff vd. (2011). "How Sovereign is Sovereign Credit Risk?"	Regression Analysis	S&P500, NASDA Q, US bond markets. (2000-2010)	 A country's CDS premiums are more closely related to the US stock market and high-yielding markets, as well as the volatility risk premium expressed by the VIX index, than local economic indicators. 			
Zhu, Haibin. 2006). An Empirical Comparison of Credit Spreads between the Bond Market and the Credit Default Swap Market.	Panel Data and VECM	US bond market and CDS	 CDS premiums and bonds act together in the long term, Concluded that some deviations occurred in the short run. 			

LITERATURE REVIEW

These studies examining the relationship between house prices and CDS premiums.

Study/Authors	Method Variables		Conclusion		
The housing market and the credit default swap premium in the UK banking sector: A VAR approach, Res. Int. Business Finance. (2018). Benbouzid N, Mallick S, Pilbeam K	VAR approach	house prices, the yield spread, the UK TED spread and the FTSE 100 index. (2004-2011)	The results of the study showed that a positive shock to the CDS premium significantly reduced housing demand and housing prices.		
Spillovers Between Turkish House Pricing, Stock Exchanges, Gold, CDS and Exchange Rate (2019, Master Thesis). Şentürk, E	VAR approach	BITS100, CDS, SP500, HPE house prices, exchange rates, gold prices, stock exchange rates, credit default swaps. (2003-2018)	The results of the study showed that gold is the most effective variable for house price index in the long run in Turkey when it is compared with other financial instruments.		

VARIABLES

Variables	Definition	Explanation	
HPE	House Price Index	Turkey's house price index	Th
CDS	Credit Default Swaps	5 Years Turkey's credit default swaps	
CPI	Consumer Price Index	Turkey's consumer price index	
CGOLD	Republican Gold	It is a type of gold that is heavier than gold.	
INT	House Interest Rate	Fixed rate house loans	Local
BIST	Borsa Istanbul 100	The index is used as the main index for Borsa	LUCAI
		Istanbul Equity Market	
			• по
USD	USD Currency Sales	USD-TRY Currency Sales	_
FTSE100	The Financial Times Stock	A share index of the 100 companies listed on	• Rea
	Exchange 100 Index	the London Stock Exchange with the highest	
		market capitalisation.	• BIS
ABD5	ABD 5 Years Bond Yield	ABD 5 Years Bond Yield	• CP
NASDAQ	National Association of	The Nasdaq Stock Market is an American stock	
	Securities Dealers Automated	exchange based in New York City. An electronic	• Int
	Quotients Exchange	exchange system	
VIX	CBOE Volatility Index	A popular measure of the stock market's	· CD
		expectation of volatility based on S&P 500 index	
		options.	• Re
	Deve la se a la deve		
IIU	Dow Jones Index	A price-weighted measurement stock market	
		stack exchanges in the United States	
		Stock exchanges in the Onited States	
GOLD	Gold	Gold	

ne data period is June 2010- March 2022. Monthly.

variables:

- use price index
- al effective exchange rate
- ST 100
- terest rates
- S
- publican Gold

Global variables:

- VIX •
- S&P 500 •
- US 5 years bonds •
- NASDAQ ٠
- **FTSE 100** •
- **Down Jones Industry** •
- Gold •

Descriptive Statistics

Date: 06/07/22 Time: 13:52 Sample: 2010M01 2022M03

	ABD5	BIST	CDS	CGOLD	CPI	DJI	FTSE100	GOLD	HPE	INT	NASDAQ	SP500	USD	VIX
Mean	0.260	6.763	5.526	6.904	5.687	9.844	8.780	9.7863	4.454720	2.574859	4.022987	7.666410	1.175796	2.868441
Median	0.401	6.721	5.480	6.622	5.614	9.788	8.798	9.8965	4.461300	2.526368	4.127134	7.648200	1.075636	2.818995
Maximum	1.091	7.711	6.370	8.751	6.737	10.50	8.955	10.689	5.850765	3.365484	5.347155	8.469300	2.680463	3.980429
Minimum	-1.564	6.208	4.780	5.870	5.159	9.187	8.500	8.3238	3.815512	2.115954	2.878074	6.938000	0.354382	2.252344
Std. Dev.	0.560	0.304	0.400	0.701	0.381	0.356	0.109	0.6311	0.452852	0.248542	0.683747	0.398548	0.608601	0.324469
Skewness	-1.060	0.652	0.458	0.801	0.573	0.047	0.411	0.9281	0.596052	1.000131	0.053871	0.090418	0.512357	0.730627
Kurtosis	3.886	3.255	2.331	2.606	2.464	1.959	2.184	3.2768	3.002275	3.993279	1.918500	2.167257	2.168943	3.401305
Jarque-Bera Probability	32.376 0.0000	10.840 0.0044	7.885 0.019	16.699 0.0002	9.826 0.007	6.686 0.035	8.223 0.016	21.574 0.0000	8.704328 0.012879	30.54935 0.000000	7.235167 0.026847	4.447750 0.108189	10.66175 0.004840	14.06490 0.000883

Covariance Analysis: Ordinary Date: 06/07/22 Time: 16:41 Sample: 2010M01 2022M03 Included observations: 147 Correlation CDS HPE CPI DJI CGOLD BIST INT USD SP500 VIX NASDAQ GOLD FTSE100 ABD5 Probability CDS 1.000000 -----HPE 0.768277 1.000000 0.0000 -----CPI 0.804506 0.986091 1.000000 0.0000 0.0000 -----CGOLD 0.832163 0.950203 0.976551 1.000000 0.0000 0.0000 0.0000 ----BIST 0.574147 0.943421 0.931908 0.896513 1.000000 0.0000 0.0000 0.0000 0.0000 -----INT 0.604712 0.581895 0.616998 0.598516 0.486169 1.000000 0.0000 0.0000 0.0000 0.0000 0.0000 ----USD 0.978959 0.0000 0.976005 0.0000 0.907330 0.0000 0.835678 0.994151 0.643155 1.000000 0.0000 0.0000 0.0000 -----0.971635 SP500 0.721941 0.973555 0.922985 0.936218 0.577333 0.962547 1.000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ----VIX 0.363869 0.057539 0.102610 0.211641 -0.019600 0.063260 0.121303 -0.062206 1.000000 0.4888 0.0000 0.2162 0.0101 0.8137 0.4465 0.1433 0.4542 -----NASDAQ 0.753614 0.973988 0.968227 0.920962 0.910027 0.583648 0.967549 0.987627 -0.016572 1.000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8421 ----GOLD 0.576244 0.821610 0.817903 0.776292 0.806162 0.373606 0.784883 0.869085 -0.096598 0.829920 1.000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2445 0.0000 0.0000 -----FTSE100 0.255345 0.637070 0.614182 0.488659 0.667837 0.392412 0.596508 0.727006 -0.588008 0.694219 1.000000 0.624996 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----0.960375 0.0000 0.967898 0.0000 0.920972 0.0000 0.929344 0.0000 0.994825 0.0000 0.856368 0.0000 DJI 0.712799 0.604923 0.961003 -0.083155 0.981899 0.0000 0.750247 1.000000 0.0000 0.0000 0.0000 0.3167 0.0000 ----ABD5 -0.275139 -0.137126 -0.166965 -0.299494-0.113791 0.181473 -0.154016 -0.107790 -0.448309 -0.106987 -0.337435 0.415356 -0.073564 1.000000 0.0007 0.0977 0.0433 0.0002 0.1700 0.0278 0.0625 0.1938 0.0000 0.1971 0.0000 0.0000 0.3759 ----

PLOTS

gold

Differenced bist

stationary

European Real Estate Society

Optimum Lag Length- VAR Analysis

Sample: 2010M01 2022M03

Included observations: 138

Lag	LogL	LR	FPE	AIC	SC	HQ
0	3388.609	NA	3.20e-39	-48.90737	-48.61040*	-48.78669
	3749.665	643 6231	2.96e-40	-51 29950	-46.84498	-49 48929*
2	3919.361	268.0696*	4.68e-40	-50.91827	-42.30621	-47.41854
3	4079.210	220.0821	9.77e-40	-50.39435	-37.62473	-45.20509
4	4254.040	205.2356	2.05e-39	-50.08754	-33.16038	-43.20876
5 6 7 8	4480.095 4781.841 5160.028 5790.852	226.7065 213.7580 228.5593	2.85e-39 2.42e-39 1.73e-39 2.10e-40*	-52.05566 -54.69606 -60.99785*	-29.53405 -26.81340 -25.29625 -27.44049	-42.05048 -41.79783 -42.74870 -47.36097

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Table shows the SIC and AIC criteria used to determine the lag length of the VAR model.

European Real Estate Society

The optimum lag length is the lag with the lowest of these values.

The 1. lag showing the lowest value in the AIC and SIC criteria was chosen as the most appropriate lag length for the VAR model.

VAR ANALYSIS

Variance De Period	ecomposition o S.E.	of DCDS: DCDS	DHPE	DGOLD	DDJI	DCPI	DCGOLD	DBIST	DABD	DINT	DNASDAQ	DSP	DSTSE	DUSD	DVIX
1 2 3 4 5 6 7 8 9 10	0.143033 0.153851 0.162372 0.164620 0.166343 0.166940 0.167277 0.167342 0.167411 0.167448	100.0000 86.54563 77.75504 75.70451 74.93192 74.41640 74.11782 74.06137 74.00125 73.97445	0.000000 0.515515 0.468715 0.772744 1.125641 1.168816 1.211845 1.221408 1.249593 1.263909	0.000000 0.250144 2.506517 2.600688 2.547130 2.701017 2.771557 2.791738 2.791138 2.790037	0.000000 0.036026 0.191074 0.218157 0.231142 0.337161 0.453709 0.455289 0.463820 0.463820	0.000000 0.541542 0.631542 0.787248 1.027446 1.020308 1.016337 1.016337 1.015758 1.014930 1.021603	0.000000 2.260684 2.060643 2.064414 2.025966 2.083649 2.088878 2.089773 2.111859 2.121203	0.000000 4.709625 4.660686 4.538708 4.708550 4.676625 4.684152 4.680978 4.681516 4.682449	0.000000 0.045038 0.057907 0.261616 0.257515 0.275468 0.277366 0.277886	0.000000 1.494854 3.540198 4.011024 3.928405 3.902155 3.887176 3.885752 3.886777 3.885327	0.000000 0.102578 1.786407 2.027054 2.177713 2.168100 2.175575 2.175733 2.173960 2.173560	0.000000 0.013983 2.494991 2.427797 2.379965 2.385072 2.426840 2.427977 2.426683 2.425748	0.000000 0.336609 0.613029 0.881409 0.890522 0.902162 0.899485 0.911555 0.911090 0.910789	0.000000 0.092244 0.347504 0.751447 0.741993 0.756723 0.753685 0.753111 0.752621 0.752290	0.000000 3.055529 2.885749 2.953185 3.026476 3.224298 3.238246 3.254093 3.257395 3.256208
Variance De Period	ecomposition o S.E.	of DHPE: DCDS	DHPE	DGOLD	DDJI	DCPI	DCGOLD	DBIST	DABD	DINT	DNASDAQ	DSP	DSTSE	DUSD	DVIX
1 2 3 4 5 6 7 8 9	0.007892 0.010771 0.013121 0.015279 0.016899 0.018506 0.020189 0.021848 0.022429	0.154961 0.085510 1.897405 2.657025 2.775614 2.821351 2.723239 2.619377 2.599175	99.84504 81.64622 76.34774 77.53920 78.45198 78.86830 79.49962 80.08361 90.56361	0.000000 0.264545 0.393982 0.368815 0.464045 0.660316 0.791050 0.838321 0.837385	0.000000 1.131006 1.260500 1.041050 0.863728 0.753926 0.643886 0.569252 0.539335	0.000000 14.90860 14.32089 11.37431 10.34317 9.997371 9.616413 9.210259 8.843898	0.000000 0.078065 1.798037 2.152182 1.892997 1.671799 1.611322 1.615777 1.580621	0.000000 0.187569 1.217965 1.222223 1.028306 0.933971 0.868292 0.823899 0.785488	0.000000 0.351251 0.266126 0.358800 0.355550 0.305709 0.273043 0.261841 0.248773	0.000000 0.468733 0.764841 1.309454 1.432294 1.300724 1.300724 1.181944 1.142812 1.131639	0.000000 0.086692 0.378615 0.309045 0.273248 0.328087 0.370931 0.374869 0.379697	0.000000 0.000201 0.322363 0.645613 1.003038 1.272466 1.382869 1.470639 1.532452	0.000000 0.791101 0.596907 0.649407 0.750841 0.747940 0.732724 0.717504 0.718793	0.000000 1.64E-05 0.424308 0.345563 0.322818 0.270691 0.242948 0.219140 0.193315	0.000000 0.000493 0.010318 0.027311 0.042371 0.067352 0.061718 0.052697 0.045807

Impulse – Response HPE

Response to Cholesky One S.D. (d.f. adjusted) Innovations - 2 analytic asymptotic S.E.s

Response of DHPE to DCDS Innovation .004 .004 .003 .003 .002 .002 .001 .001 .000 .000 -.001 -.001 З 5

Response of DHPE to DCPI Innovation

Response of DHPE to DCGOLD Innovation

-.001

European Real Estate Societ

From the 2nd to the 5th month, it was observed that it gave an increased response.

The HPE variable had a very specific response to a shock in the CPI variable in the first month, the response between the 2nd and 3rd months remained stable and decreased between the 3rd and 5th months.

GRANGER CAUSALITY

Granger causality analysis is used to determine the direction of the relationship between variables in time series analysis.

$$Y_t = \alpha_1 + \sum_{i=1}^n \beta_i X_{t-i} + \sum_{j=1}^m \delta_j Y_{t-j} + e_{yt}$$
(1)

$$X_{t} = \alpha_{2} + \sum_{i=1}^{n} \theta_{i} X_{t-i} + \sum_{j=1}^{m} \gamma_{j} Y_{t-j} + e_{xt}$$
(2)

In the analysis of causality, the significance of the HO and H1 hypotheses is checked. Rejecting the HO hypothesis means that there is a Granger causality relationship between the variables.

Rejecting the H0 hypothesis means that there is a Granger causality relationship between the variables.

Pairwise Granger Causality Tests Date: 06/07/22 Time: 18:56 Sample: 2010M01 2022M03 Lags: 2			
Null Hypothesis:	Obs	F-Statistic	Prob.
HPE does not Granger Cause CDS	145	5.01703	0.0079
CDS does not Granger Cause HPE		0.34408	0.7095
CPI does not Granger Cause CDS	145	6.03722	0.0031
CDS does not Granger Cause CPI		4.74071	0.0102
CGOLD does not Granger Cause CDS	145	5.92795	0.0034
CDS does not Granger Cause CGOLD		3.14255	0.0462
BIST does not Granger Cause CDS	145	9.61350	0.0001
CDS does not Granger Cause BIST		4.84686	0.0092
INT does not Granger Cause CDS	145	0.40888	0.6652
CDS does not Granger Cause INT		11.4030	3.E-05
USD does not Granger Cause CDS	145	5.94336	0.0033
CDS does not Granger Cause USD		14.8812	1.E-06
SP500 does not Granger Cause CDS	145	5.20947	0.0066
CDS does not Granger Cause SP500		1.52857	0.2204
VIX does not Granger Cause CDS	145	0.74957	0.4745
CDS does not Granger Cause VIX		1.03896	0.3565
NASDAQ does not Granger Cause CDS	145	6.55338	0.0019
CDS does not Granger Cause NASDAQ		0.27624	0.7590
GOLD does not Granger Cause CDS	145	1.78727	0.1712
CDS does not Granger Cause GOLD		4.74813	0.0101
FTSE100 does not Granger Cause CDS	145	2.82675	0.0626
CDS does not Granger Cause FTSE100		1.49995	0.2267

CONCLUSION

- In this study, with the VAR model approach, the exchange rate, BIST 100, CPI, housing interest rates, republic gold, VIX, S&P 500, US 5-year bond market, Down Jones Industrial Index, Gold, FTSE100, and NASDAQ variables of Turkey CDS premiums were analyzed statistically. relationships and whether CDS premiums affect housing prices are examined.
- Variables were included in the analysis on a monthly basis between 2010 January 2022 March.
- According to the variance decomposition results, it was observed that the CDS variable was completely affected by its own shocks in the first month, and the BIST100 variable (5%) was the most affected in the second month, followed by the VIX variable by 3%.

CONCLUSION

- The most important factors determining Turkey CDS premiums between January 2010 and March 2022 are BIST 100 index, CBOE Volatility Index and housing interest rates.
- Housing price index variable is mostly affected by the inflation rate, housing interest rate, and republic gold prices.
- HPE variable was affected by its own shocks at a rate of 99.85% in the 1st month, while it was affected by CDS premiums in the remaining part.
- From the second month onwards, it was observed that it was affected by the CPI variable by 15% and gradually decreasing.
- As a result, it has been seen that the factors that most affect Turkey's 5-year CDS premiums are BIST 100 index, CBOE Volatility Index and housing interest rates. It has been observed that the housing price index is mostly affected by the inflation rate.

THANK YOU FOR LISTENING.

Q&A

You can reach me with an email: aybalademir123@gmail.com

References

- Benbouzid, N., Mallick, S., Pilbeam, K., (2018). The housing market and the credit default swap premium in the UK banking sector: A VAR approach. *Res. Int. Business Finance*, 44, 1-15.
- Danacı, M. C., Şit, M., & Şit, A. (2017). Kredi Temerrüt Swaplarının (CDS'lerin) Büyüme Oranıyla İlişkilendirilmesi: Türkiye Örneği. Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(2) 67-78.
- Kargi, B. (2014a). Credit default swap (CDS) spreads: the analysis of time series for the integration with the interest rates and the growth in Turkish economy, Montenegrin Journal of Economics, 10(1), 59-66. doi. 10.2139/ssrn.2467546
- Kılcı, Esra N. (2017). CDS Primleri ile Ülke Kredi Riski Arasındaki İlişkinin Değerlendirilmesi; Türkiye Örneği, Maliye Finans Yazıları, 108, 71-86.
- Koy, A. (2014). "Kredi Temerrüt Swapları ve Tahvil Primleri Üzerine Ampirik Bir Çalışma". International Review of Economicsand Management, 2(2), 63-79.
- **Şentürk, E.(2019**). Spillovers Between Turkish House Pricing, Stock Exchanges, Gold, Cds And Exchange Rate(Yüksek Lisans Tezi). İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü.
- Norden, L. and WEBER, M. (2009). "The Co-Movement of Credit Default Swap, Bond and Stock Markets: An Empirical Analysis." European Financial Management, 15(3), 529-562.
- Brandorf, C., & Holmberg, J. (2010). Determinants of sovereign credit default swap spreads for piigs a macroeconomic approach, Bachelor Thesis, Lund University School of Economics and Management, Department of Economics.
- TCMB Financial Stability Report ,2020
- Url-1 <https://www.isda.org/a/ur4TE/Guidelines-for-Smart-Contracts-CDS.pdf>, ISDA Legal Guidelines for Smart Derivatives Contracts: Credit Derivatives , Erişim Tarihi 15.12.2021.
- Url-2<u>https://www.tcmb.gov.tr/wps/wcm/TR/TCMB+TRYayinlar/Raporlar/Finansal+Istikrar+Raporu/2020/Sayi+30</u> > Finansal İstikrar Raporu 2020 Sayi:30, Erişim Tarihi:10.11.2021