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Abstract

Ever since its advent, the adoption of renewable energy technology has received significant government

support. However, there is limited empirical evidence on the effectiveness of subsidies that are used to

promote renewable energy technology. Using a natural experimental setting where a solar PV subsidy is

assigned randomly to applying households, we estimate the impact of subsidy provision on the adoption

of solar PV, installed capacity, timing of the adoption and, ultimately, on electricity consumption.

The results show that, within the group of households that applied for the subsidy, the provision of

subsidy leads to a 14.4 percent increase in the probability of adopting solar PV, a 33.2 percent larger

installation, and a 1 year faster adoption. However, examining the subsequent electricity consumption

of the applicants, we report that the subsidy provision leads to a decrease in household electricity

consumption of ”just” 8.1 percent, as compared to the rejected applicant group, implying a cost of

carbon of more than €2,202 per ton CO2. The results of the paper show that the subsidy program

mostly attracted the converted, although there might be spillover and other effects that may reduce the

cost to somewhat lower levels.
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1 Introduction

In an effort to reduce the reliance on fossil fuels and the resulting carbon externality, stimulating

renewable energy generation has become a vital aspect of public policy. Hence, many countries have

set ambitious targets to increase the share of renewable energy in their primary energy mix. Given

that the residential sector accounts for more than 25 percent of final energy consumption in the EU

(Eurostat, 2020), it has been an obvious target for the renewable energy transition. In an effort to

stimulate renewable energy generation among households, solar photovoltaic (PV) subsidies have

been popular. According to Gielen et al. (2019), globally, solar PV received the largest share (48%)

of renewable power generation support, with USD60.8 billion in 2017 alone. Especially at times

when solar PV adoption was still slow, subsidies were introduced in order to provide a financial

incentive to early adopters. These subsidies have been supplied in various forms, ranging from

upfront and tax rebates, to production-based tariff subsidies.1 Given that subsidies are costly

to ratepayers, governments or both, the extent to which they achieve their desired environmental

goals is a substantial question. Only when we understand how households respond to these financial

incentives, future policies can be designed more effectively, in particular those boosting the uptake

of (renewable) energy technologies in the early adopter stage (e.g. battery storage).

Although PV subsidy programs have been widely implemented across a large variety of countries,

there is limited evidence on their effectiveness. There are only a handful of studies investigating

the impact of subsidy programs on solar PV adoption. Bollinger and Gillingham (2012) study

the California Solar Initiative (CSI), which provided $3.3 billion during a 10-year rebate program,

aiming to achieve a surge in solar PV uptake. By exploiting differences in rebate levels in 33

ZIP codes alongside the border of two electricity providers in California, the authors find a lower

adoption rate on the side of the border where the rebate scheme decreased. In another study,

exploiting changes in actual rebate levels over time in California, Hughes and Podolefsky (2015)

estimate that an increase in rebates from $5,600 to $6,070 would lead to a 10% increase in

PV installations. They also predict that 47% of all households that were assigned the subsidy

would have adopted solar PV, even without any rebate. Crago and Chernyakhovskiy (2017) study

county-level data of 13 US states over the period 2005-2012, and exploit the variation in policies

over time and across states. Their findings suggest that when the rebate level increases by 1 dollar

1In order to incentivize solar installations, countries generally use investment subsidies that refund part of the
installation cost and/or feed-in tariffs/net metering mechanism in which producer is paid under a multi-year contract
at a guaranteed rate.
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per generated watt (a very handsome rebate), annual PV capacity increases by 47%. In a recent

study, De Groote and Verboven (2019) investigate a generous Belgian subsidy program for solar

PV adoption, and exploited rich variation in the future subsidy conditions at pre-announcement

dates. Their results indicate that consumers discount the future benefits more when adopting solar

PV. The sensitivity analysis finds some evidence for heterogeneity in discounting across consumers,

indicating that future subsidy policies might have additional distributional effects, and require

targeting of consumers with a low discount factor.

Although earlier studies provide useful information on impact of subsidy programs, there are

some methodological concerns that need to be addressed to appropriately assess the impact of

subsidies on solar PV adoption. Estimating the impact of subsidy programs requires knowing the

amount of solar installation that would occur in the absence of the subsidy, which is not easy to

observe. One approach might be comparing regions with different rebate levels. However, this

might provide biased results as those regions presumably decide on subsidy policies based on the

characteristics of the region and their residents. Besides, the regional rebate differences might

be highly correlated with other energy policy instruments applied in those regions. In most of

the available studies, these concerns are addressed through a quasi-experimental design. Using

region-level data on solar adoption rates and over-time variation in regional rebate levels, these

studies estimate the differential changes in adoption rates assuming parallel trends in solar adoption

rates in the absence of treatment. However, in case the parallel trends assumption is violated due

to differing characteristics of regions, these results might be biased. Besides, these studies assume

that over-time change in rebate levels across different regions are uncorrelated with the changes

in other characteristics of these regions that might also effect solar adoption rates. However, this

assumption is hard to be satisfied in case policy makers decide on rebate levels based on the

current adoption rates. An alternative approach for assessing the impact of subsidies might be

analyzing individual level data on subsidy provision and adoption decision. However this approach

also includes important endogeneity concerns, as PV subsidies tend to be more popular among

households that are already planning to adopt solar PV, causing a self-selection bias.

Our paper complements the previous literature through providing a natural experimental

setting in which the exogeneity assumption is satisfied by the help of random assignment of

solar PV subsidies to applicants. Additionally, our paper complements the literature on household

heterogeneity in subsidy effectiveness. Numerous papers examined the characteristics of solar PV
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applications as opposed to non-applicants.2 We follow-up in this strand of studies by examining the

heterogeneity of subsidy effects between (i.e. applicants versus non-applicants) and within groups.

By using more granular data on the household level, we can see how individual households respond

to subsidy provision, compared to the group of applicants that is rejected for the subsidy program

after the lottery. In this way, we can identify which groups are most responsive to the subsidy, and

which ones will adopt solar PV regardless of receiving the subsidy.

In this study, we explore the exogenous variation in subsidy provision to evaluate the

effectiveness of a residential solar PV program in the Netherlands, a market which has been

especially slow in the uptake of solar PV due to the local abundance of natural gas resources.

However, in recent years, Dutch gas resources started running out while climate change concerns

became more prominent. Hence, the Dutch government issued a production-based subsidy in the

years 2008, 2009 and 2010, targeted at homeowners. At that time, solar PVs supplied just 0.01

percent of total energy consumption in the Netherlands (CBS, 2018). In order to get the first

group of PV installers moving, the government issued a subsidy that was open to everyone. In

all three years, this PV subsidy was oversubscribed, and a lottery decided on which applicants

were offered the subsidy. Our data set covers all applying households, and we link their subsidy

application details to the relevant household level characteristics. Additionally, we analyze 200,000

aerial images in order to identify whether, and if so when, applying households installed solar PV.

Through this natural experimental setting, we can accurately estimate the average treatment effect

on the treated by analyzing their solar PV installations and their subsequent energy consumption

patterns. By studying the subgroup of applying households during the early stage of technology

adoption, we learn how government subsidies affect households that are already primed to respond

to renewable energy technology subsidies.

Our results show that the provision of subsidy leads to a 14.4 percent increase in the probability

of solar PV adoption among the households that applied for the subsidy. The findings also indicate

that, at the intensive margin, households that are accepted for the subsidy have a 33.2 percent larger

installed capacity as compared to rejected households, and opt for installation about 8 months

faster. Finally, examining the subsequent electricity consumption of the applicants, we report

2For instance, De Groote et al. (2016) find that presence of local policies and income have a positive effect on
solar adoption in Flanders. Additionally, they say that the income effect is predominantly caused by the fact that
wealthier households have a higher likelihood of adopting, because they are more likely to own the house, have a
higher electricity usage, or own a house that is better suited for the PV installation. Jacksohn et al. (2019) explore
the relative importance of different drivers of solar PV adoption through a german household panel. They find that,
although household income and dwelling type influence the investment decision, economic factors are most important.
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that the subsidy provision leads to a 8.1 percent decrease in households’ electricity consumption as

compared to the group of rejected applicants. Comparing the marginal energy savings with the cost

of the subsidy program, we estimate that the subsidy has an implied a cost of carbon of more than

e2,202 per ton. Clearly, there are more cost-efficient manners to reduce the carbon emissions from

the residential real estate sector more generally, and when it comes to early adopters specifically,

other methods may be more efficient. That said, our study does not take into account other effects,

including possible spillover effects that the installation of solar PV by early adopters may have

had on nearby residents, or the increase in salience of energy efficiency by applying householders,

leading to spillover effects within homes, for example, the installation of more efficient light bulbs,

insulation etc.

This paper proceeds as follows: section 2 gives a brief overview and background of the solar

policy incentives in the Netherlands. Section 3 outlines our data sources and presents summary

statistics, while section 4 discusses our empirical model and empirical findings. The most important

results and policy implications are summarized in section 5.

2 The short history of (Dutch) solar policy incentives

Although the technology behind solar power dates back to the early nineteenth century – when

the only 19-year-old Edmond Becquerel was the first to generate electricity by capturing sunlight

– it has taken over another 150 years before governments recognized the potential and importance

of upscaling solar energy.3 Up until the early seventies solar power was mostly popular within

the space program for powering satellites. In 1970 photochemist Elliot Berman teamed up with

Exxon Mobile to build fsolar panels that would be economic for use on Earth. Their work gradually

increased the efficiency of solar cells from 14 percent in 1970 to 36 percent in 1999, which fueled

international investments in solar parks which currently outpace their fossil fuel alternatives.

The Netherlands has always been slow in its uptake of these solar power possibilities, partly

due to the historic reliance on their local natural gas resources. By 2008, Dutch solar energy

was virtually non-existing, and only 3.4 percent of the total Dutch energy use stemmed from

renewable energy sources (the sum total of biogas, wind, biomass, solar and hydro). Around the

same time, in 2008, The Renewable Energy Directive has set firm rules for the EU to achieve its

3In 1977 the US Government was the first to embrace the virtues of solar power, and stimulated the development
of solar energy technology by launching the Solar Energy Research Institute.
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20 percent renewables target by 2020.4 This firm EU target, inspired the Dutch government to

start stimulating renewable energy production actively. Hence, in 2008 the SDE (which is short

for stimulating the production of sustainable energy) subsidy program was launched. These SDE

subsidies made funds available for both firms and households and were designed after the price

gap approach, compensating investors for the difference between the average market price per kWh

and the cost per kWh. Back then, green energy was more expensive during production. Hence,

the SDE subsidies offered financial compensation for these excess costs during the first 12 years

of exploitation. These compensations were set and re-assessed every year, based on energy price

realizations.

Back in 2008, a typical Dutch household consumed 3,400 kWh of electricity a year, a number

which has remained almost constant over the years. The 2008 electricity price for Dutch household

consumption (including taxes) equaled e0.23/kWh. In other words, the average household

electricity bill in the Netherlands was around e780, a year. Installing 10 solar panels with a

sum surface of 16 m2 of 2008 quality would generate 1,550 kWh of solar electricity, resulting in a

e355 reduction in the electricity bill. However, purchasing and installing these 10 panels in 2008

came at a cost of e9,350. This would imply a payback period of 26 years, which made solar panel

installations financially unappealing for Dutch households.

This is where the SDE subsidies came in. They were made available in three rounds in the

years 2008, 2009, and 2010, every year in two tranches; one for small scale (household) producers

up to 15,000 kWh/year offering them e0.30/kWh in 2008, and one for large scale (15,000 –

1,000,000 kWh/year) producers offering e0.41/kWh in 2008. Obviously, these subsidies changed

the household math of solar economics drastically. Assuming fixed electricity prices and subsidies

over the twelve years that have past – and during which the first tranche of SDE subsidies paid out

– consumers would earn e0.53 on every kWh of homemade solar electricity. This way the 1,550

kWh that would come from these 10 solar panels equaled a revenue of e820 a year, thereby cutting

back the payback period to 11 years.

Hence, these SDE subsidies turned out very popular. For the first time, Dutch private

households could apply for solar subsidies, they did so and in large numbers. In 2008, 2009

and 2010 around 15,000 applications were made in total after opening, which was April 1st.

Applications could be handed in both on paper and digitally. Since the first took more time

4See https://ec.europa.eu/energy/topics/renewable-energy/renewable-energy-directive nl for more details on The
EU Renewable Energy Directive. The 20 percent 2020 target is spread unevenly across Europe, accounting for natural
endowment effects. For the Netherlands the 2020 target for renewable energy production was set at 14 percent.
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for processing, the government authority responsible for issuing these subsidies first collected all

applications and then organized a lottery to select granted applications. After being accepted to

the subsidy program, applicants had 4 years to complete the solar PV installation in order to be

able to claim the compensation. For the 12 years following solar PV installation, the household

received a compensation for every kWh of generated electricity. If not accepted, households could

apply to the subsidy again in the next year.

3 Data

In order to investigate the impact of solar PV subsidies on household’s solar adoption decision and

their subsequent energy consumption, we benefit from a data set obtained from the Netherlands

Enterprise Agency (RVO), which provides information on the applicants of solar PV subsidy

programs implemented in years 2008, 2009, and 2010. The sample includes 14,891 households.

From this source, we know the address of the households that applied to the subsidy program and

whether they are accepted or rejected for the subsidy based on a lottery. We complement this

data with information gathered through aerial images. These images were shot on a yearly basis

from 2007 to 2016 by means of an aircraft. We match these pictures to the addresses of subsidy

applicants and manually analyze the presence of a solar panel installation on the rooftop. Contrary

to detecting satellite images for solar panel presence through an algorithmic approach, we create a

data set with a close to 100 percent accuracy on solar panel presence. The limitation here is that

this approach does not easily allow to create a data set of solar panel presence for the complete

population. However, this is no major concern for our analysis since we are focusing on the subgroup

of applicants that applied to the solar PV subsidy. Through the randomization process provided

by the subsidy lottery, we have a comparable control group and we do not need data on the total

population for our analysis. The aerial shots provide us with information on whether, and if so

when, households adopted solar panels from 2007, i.e. 1 year before the subsidy application, until

2016. For the realized installations, we can also identify the size and number of installed panels. We

merge this data with detailed household level information about the occupants and their electricity

consumption provided by the Central Bureau of Statistics in the Netherlands (CBS). The CBS data

includes information on annual electricity consumption, household composition, income, wealth,

education level, dwelling size, type and construction year. In addition to the sample of subsidy

applicants, we also include a random 1% sub-sample of the non-applicants in all three subsidy

years.
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We removed outliers at the upper and lower 1% level for electricity consumption, surface,

income, and wealth. Additionally, we excluded observations where annual electricity consumption

is zero. We also excluded households that applied to the program multiple times in the three years
5, and households that moved during the sample period. In this way, we end up with a sample of

4,439 applicants and 161,929 non-applicants.

Table 1 - columns 1 and 2 provide the descriptive statistics for the applicants and the

non-applicants in the years before the subsidy application. The statistics indicate that there are

significant differences in observable characteristics between these two groups. Households who apply

to the subsidy program on average consume more electricity, are younger, have a larger household

size, more children, higher income and wealth, and a higher education level. They are also more

likely to live in semi-detached or detached dwellings, and in relatively new (1990+) dwellings. Table

A.1 - column 1 in the appendix provides the estimation results for a logit regression model that

assess the determinants of subsidy application. Complementary to Table 1, these results indicate

that household and dwelling characteristics have a significant impact on the decision to apply for

the solar PV subsidy. From this observation, we can clearly see that there is a sorting effect. This

finding is in line with Allcott et al. (2015) showing that in the absence of targeted policy, there

will be a certain group applying to subsidy programs for energy efficient durable goods. In their

case, this group consists of wealthy homeowners that face less credit constraints, and that are more

likely to be interested in solar panel adoption.

— Insert Table 1 —

Once households applied to the subsidy program, their acceptance to the program was decided

by a random draw. In line with expectations, Table 1 - column 5 proves that there are no significant

differences in observable characteristics across accepted and rejected households. Additionally,

Table A.1 - column 2 in the Appendix provides the estimation results for a logit regression model,

where subsidy acceptance is the dependent variable. The results support that subsidy acceptance

is indeed randomly assigned.

5There were eight households that applied twice, and also eight that applied to all three subsidy years. Since
this number of households is relatively small, we do not perform a separate analysis on this group and drop these
observations.
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4 Methodology and Results

In order to estimate the impact of subsidy programs on solar panel adoption decision, we need to

know what would happen in the absence of the subsidy. In this study, we use the exogenous variation

in subsidy provision to identify the impact of subsidy provision. As subsidies are assigned based on

a random draw, we are able to compare accepted and rejected subsidy applicants. By the help of

the random assignment rule, we can estimate the Average Treatment effect on the Treated (ATT).

In the case of a policy intervention where a specific group sorts into the program, an evaluation

problem can occur by observing no counterfactual. Contrary to estimating the Average Treatment

Effect (ATE), the ATT removes the selection effect by providing a counterfactual group that is

similar in both observable and un-observable characteristics, but did not receive treatment. ATT

is therefore found to be useful in estimating the effectiveness of policy instruments on the subsidy

receivers. The method applies to a setting where there is an initial group of applicants identified,

after which a random process determines who will be accepted to receive program benefits.Following

Heckman et al. (1997), the ATT parameter is defined as:

E(Yi1|D = 1, R = 1)− E(Yi0|D = 1, R = 0) = E(∆Yi|D = 1) (1)

Where D = 1 denotes application to the subsidy program, and R = 1 the acceptance to that program

determined by a random process. The treatment effect of the subsidy program is the outcome of

the rejected applicants subtracted from the outcome of the accepted applicants (∆Yi). This net

effect is the total program effect, i.e. the outcome if all applicants would have been accepted to the

subsidy program.

In this paper, we investigate the impact of a subsidy program on two types of outcomes. First,

we consider the effect of acceptance to the subsidy program on the decision to adopt solar PV,

investment size and its timing. Thereafter, we examine how the subsidy program affects end use

in electricity consumption. In order to examine the impact of subsidy provision on these outcome

variables, we propose the following empirical model:

Yi = β0 + β1Acceptedi + β2Xi + Ti + εi (2)

where Yi denotes the outcome variable for household i. For the adoption decision the outcome

variable takes 1 if household installs solar panel during the period of analysis and zero otherwise.
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Moreover, we also consider how size of the panel installation is affected by the acceptance to the

subsidy program. As another and final outcome variable, we also consider the number of years

between applying for the subsidy program and installing solar panels. For these outcome variables,

we perform a cross sectional analysis on all households that adopted solar PV. Acceptedi denotes

whether household i is accepted to the subsidy program. Xi is a vector of home and household

characteristics. Ti is an application year fixed effect, for the three different application years of the

subsidy program and εi is the error term, assumed to be independent from subsidy provision and

normally distributed.

4.1 Solar PV Adoption

Given that subsidy is assigned randomly, first we check how these two group of households respond

to subsidy provision based on descriptive statistics. For all subsidy applicants, we know whether

they installed solar panel between 2008 and 2016. If they install the solar panel, we can also identify

the size and timing of the adoption from areal imagery. In Table 2, the descriptive statistics of

the solar PV adoptions are displayed for every subsidy year, split up for accepted and rejected

applicants. Firstly, we can see that in the first year of the program most of the applicants were

accepted into the program. In the second year, the amount of accepted and rejected households

was more even. Then, in the last year, the largest part of the applicants was not assigned any

subsidy. In the subsidy programs of 2009 and 2010, it is also visible that subsidy provision led to

a larger total size of the panels. We see that accepted applicants are significantly more likely to

adopt solar panels in all subsidy years. However, in the group of rejected applicants, still more than

half of all households installed solar panels within the observation period. Multiple mechanisms

could be at play here. Firstly, it could be the case that the application process itself is already

what motivates households to invest in a PV installation. They overcame the barrier of filling

in the forms and investigating suppliers, and their investment decision is only partly affected by

whether they receive the subsidy or not. 6 Moreover, the subsidy application process could simply

identify those that are already planning to adopt solar PV. With our observed data it is hard to

draw conclusive insights on which, combination of, factor(s) is at play here. One thing we can do

is consider the timing of adoption after the subsidy application year. Here we see that the rejected
6For instance, Fowlie et al. (2015) investigate the Weatherization Assistance Program in Michigan, a program

aimed at increasing investment in energy efficiency measures for the home. They find that, even when investment
costs were fully covered and significant effort was put in persuading households, participation in the program only
increased slightly. Their findings indicate that non-monetary costs, such as paperwork, are a significant barrier
towards investment.
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subsidy applicants delay their adoption compared to accepted applications. This would suggest

that both of the above-mentioned effects are at least not the complete story, as we would then see

an immediate adoption in the rejected applicant group as well.

— Insert Table 2 —

Next, we estimate a logit model based on the empirical model in equation (2), in which the

dependent variable is a binary variable that takes one if the household install solar panel within

the period of analysis, and zero otherwise. In Table 3, we report the average marginal effects for

the logit model.7 Columns 1 and 2 present the sub-sample estimation results for which we have

information on household and home characteristics. Comparing these result, we conclude that

adding the control variables to the model does not lead to a significant difference in the estimated

effect of subsidy provision on the solar adoption decision, which also supports the exogeneity of

subsidy assignment. Therefore, in column 3, we provided the full-sample estimation results without

controlling for the household and home characteristics. We observe that acceptance to the subsidy

program has a significant and positive impact on solar adoption. Being accepted to the subsidy

program leads on average to a 14.4% increase in the chance to adopt solar PV.8 Our result is in line

with previous literature that finds a significant role for financial incentives in the adoption of solar

panels (Bollinger and Gillingham, 2012; Hughes and Podolefsky, 2015; Crago and Chernyakhovskiy,

2017; Jacksohn et al., 2019). With the subsidy offering on average e0.52 per kWh, while electricity

in the period costed on average e0.23/kWh, the payback period was cut by 11 years. Given

this benefit, the effect size that we find seems to be limited. However, this result is reasonable

given our estimation method. The previous literature compares adopters with non-adopters in a

quasi-experimental setting. In this study we do not look at the average treatment effect of the total

population, but the subsidy effect on a selected group applicants. We would now expect a smaller

effect size compared to previous literature. That is because the applicant group is already more

likely to adopt solar panels compared to the total population, and the effect in previous studies

could be partially driven by a selection effect. For instance, Hughes and Podolefsky (2015) estimate

that 47% of subsidy receivers in their study would have adopted solar PV regardless of the subsidy.

Therefore, the 14.4% that we find can be a reasonable finding of the additional effect of subsidy on
7Table A.1 in the appendix provides the raw results for the logit estimation.
8Moreover, there is a significant effect on the solar adoption decision for the number of children and elderly, the

type of dwelling, and the building year of the dwelling. The number of children and number of elderly in a household
decrease the chance of adopting solar PV by 4.64% and 2.54% respectively. We conclude that acceptance to the
subsidy program is the most significant and largest driver of solar adoption among the applicants.
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solar adoption among the selected group of applicants, i.e. the households that were motivated to

respond to the subsidy application.

— Insert Table 3 —

We also check how subsidy provision affects the total PV investment size of households. Focusing

only on the binary adoption decision might provide misleading results as the subsidy might also

affect the size of their investment. Table 3 - Columns 4 and 5, which report the results for the

matched sample, show again that including the control variables to the model does not change the

effect size. The full sample in column 6 shows an effect of 33.2%. Thus, by looking at the panel

size of installers in the treatment and control group, we see that the subsidy has a positive and

significant influence in the installed PV capacity.

Next, we check whether there is a difference in the timing of PV adoption between accepted and

rejected applicants. We track the PV installation decisions of subsidy applying households until 7

years after their subsidy application. Figure 1 shows that more than 30% of accepted applicants

install solar PV in the year of application, or the first year after that. On the contrary, solar PV

adoption among rejected applicants is more spread out over the years. The percentage of rejected

applicants that install panels in the year of application or the subsequent year is around half of

the percentage in the accepted group. As highlighted by De Groote and Verboven (2019), in the

early stage of a new technology, timing of adoption is an important consideration in the investment

decision. Because of rapidly decreasing costs and increasing quality, it can be worthwhile to wait,

even if an investment would already be profiTable at that moment. The delayed investment in the

rejected applicants group is in line with this reasoning. Besides, these household are not motivated

by installing solar PV before a certain date, after which their subsidy benefits could not be claimed

anymore. When accepted to the subsidy program, the households are forced to install solar PV

within 4 years. This is also the reason why there is a small jump in the percentage of installers

visible in year 5 for accepted applicants. This group was reminded of the expiration of their rights,

and installed the PV panels just before the deadline. Thus, subsidy provision not only significantly

increases solar adoption, but also moves the adoption decision forward.

— Insert figure 1 —

Table 4 provides the OLS estimation results of equation 2, for which the outcome variable

is the number of years passed between subsidy application and adoption. Among adopters, the

acceptance to the subsidy program leads to a faster adoption of a little more than 1 year, 1.07.
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— Insert Table 4 —

4.2 Heterogeneity Analysis

Table 5 reports a heterogeneity analysis of the effect of subsidy acceptance on solar PV adoption.

We interact the dummy that indicates acceptance to the subsidy program, with a dummy that

equals one if a household falls in the upper 50% of the distribution of a certain variable. In this

analysis we see if the relationship is heterogeneous across different levels of age and wealth of the

household. In this way, we assess here how the responsiveness to subsidy acceptance is influenced

by these observable household characteristics. Once accepted to the subsidy program, a household

can still decide on whether or not to invest in solar PV panels. For both age and wealth, we can

see that there is no significant interaction effect observable in this sample. Both of the interaction

terms hint at a negative relation between the a higher age and wealth, compared to the lower 50%.

However, the standard errors are too large too reject the null hypothesis of no effect. The decision

to adopt solar panels could be less affected by the provision of subsidy for wealthier and older

households. The relation with wealth could be explained by the fact that the subsidy reduces the

payback period substantially and this may be a more important factor for households with lower

wealth. Regarding age, it would be likely that the age of the household is also related to their level

of wealth and that the effect could be explained by the same reasoning. To draw more conclusive

insights on these mechanisms, a larger sample size would be of use.

— Insert Table 5 —

4.3 Electricity Consumption

The underlying aim of subsidizing renewable energy technologies is to decrease grid energy

consumption, which is mostly based on fossil fuels. Our earlier results indicate that subsidy

provision increases the adoption of solar panels. However, this does not imply that it has

proportional impact on grid-based final energy use. The access to solar power at near zero marginal

costs may well induce rebound effects which shift households’ demand curve and distort the net

effects of solar PV investments. The rebound effect, or ”takeback”, is described as the loss in

expected gains from an efficiency-increasing technological change that is caused by a behavioral

change (Berkhout et al., 2000). It is a widely-researched concept for various efficiency-increasing

12



technologies.9 On the other hand, there are only a few papers that estimate a solar rebound effect

for households. Analyzing billing data for the period 2007–2014 on a sample of 4,819 households in

Sydney, Deng and Newton (2017) document a rebound effect of around 21 percent. Using household

level high frequency electricity consumption and production data from 277 solar homes in Phoenix

Arizona, Qiu et al. (2019) found that when solar electricity generation increases by 1 kWh, solar

PV homes increase their total electricity consumption by 0.18 kWh.

Therefore, in this study we also examine how subsidy provision affects the final grid-based

electricity consumption. Figure 2 compares yearly electricity consumption of accepted and rejected

applicants, and non-applicants over time for the three subsidy waves. We measure net electricity

consumption, meaning that all solar generated electricity is deducted from the household’s

electricity consumption. There is a clear pre-trend visible for the applicants, as electricity

consumption in the accepted and rejected group is similar before the assignment of subsidy benefits.

Moreover, the electricity consumption of applicants far exceeded those of non-applicants during the

pre-subsidy period. For all three groups, we see that electricity consumption goes down over time.

The decline is steepest for the accepted applicants, and smallest for the non-applicants. For the

rejected and accepted applicants, the gap in electricity use first widens, but then becomes more

narrow over time. This can be explained by the lagged solar panel installation, as displayed in

figure 1 above.

— Insert figure 2 —

Next, we estimate whether their is a significant net effect in grid-based electricity consumption

between the accepted and rejected applicants, in the short and long run. The empirical model is

as follows:

ln(Electricityit) = β0 + β1(Acceptedi ∗ Postt) + β2Acceptedi + β3Postt + Tt + εit (3)

where the dependent variable is the log net electricity use of household i in time period t. Acceptedi

is a dummy variable indicating whether household i is accepted to the subsidy program. Postt is

a dummy variable that equals 1 if period t is after the subsidy application year. The subsidy

application year is excluded from the analysis. εit is the error term, which is assumed to be random

and normally distributed.

9See Sorrell et al. (2009); Aydin et al. (2017).
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The results of the model of equation 3 can be found in Table 6. When we consider the sub-sample

that we were able to match to the household characteristics, we only observe a long run effect. After

1 year, there is no significant difference between the treatment and control group in electricity

consumption. This could have to do with the limited sample size. After 5 years, there is a 2.94%

decrease in electricity consumption in the subsidy receiving group of adopters, compared to the

solar PV adopters that did not receive subsidy. Without controlling for household characteristics,

the sample becomes larger and we find a significant treatment effect after 1 year and after 5 years.

We also see that including the household characteristics leads to similar a similar effect size, which

is in line with expectation given our exogeneous treatment assignment which would eliminate the

effect of omitted variables. If we regard the full sample of applicants, we see that acceptance to

the subsidy program leads to a 5.92% decrease in grid electricity use in the post treatment period

during the first year. This effect is still significant after 5 years and increases to 8.10%.

To judge the size of this electricity reduction relative to the program costs, we perform a back

of the envelope calculation. With an average yearly electricity use of 4,026 kWh in the applicant

group, yearly realized electricity savings from the subsidy program are 326 kWh. Considering a

lifespan of 25 years for a solar panel installation, the total additional electricity savings are 8,153

kWh per household that received subsidy. Over 25 years, this means that the overall electricity

savings are around two years in electricity use. We can regard this as a relatively small yield. Given

our empirical approach which isolated the additional effect of subsidy provision on the households

that are already inclined to respond to renewable energy technology subsidies, the result is not

surprising. The effect that we find is limited, because the subsidy is partly provided to households

that would install the panels regardless of whether they receive subsidy.

In order to assess the cost-effectiveness of this subsidy program, we relate the electricity savings

to the program costs. 5216 households received a total of e52 million. The total savings in kWh

are 42.5 million. Per kWh, the program thus spent e1.22. In terms of tons of CO2 reduced, this

would transfer to 23,610 ton. Per ton of CO2, e2,202 was spent. In the EU ETS market, the

same unit of reduction costed around e26 in 2008. In terms of electricity savings achieved through

the program, we can thus conclude that CO2 reduction came at a substantial cost. Comparing to

previous literature evaluation solar panel subsidies in the residential market, the cost that we find

is also substantially higher. For instance, the cost of mitigating CO2 per ton was between $130 and

$196 in Hughes and Podolefsky (2015), $184 in Crago and Chernyakhovskiy (2017), and $364 in

Gillingham and Tsvetanov (2019). This substantial difference can have two explanations. Firstly,
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we consider a different program structure in another country. Secondly, with our methodological

approach we are able to estimate an ATT instead of an ATE, which could lead to a smaller effect

size and thus a higher program cost per unit of savings.

— Insert Table 6 —

4.4 Heterogeneity Analysis

In Table 7 we present a subsample analysis for the relation between subsidy acceptance and

electricity consumption. We identify different groups based on observable characteristics and

see how these characteristics influence the extent to which households change their electricity

consumption after being accepted to the subsidy program. As in Table 5, we focus on age and

wealth. Age of the household head does not alter the relation between subsidy acceptance and

electricity consumption. Households with a higher wealth level in the treatment group reduce

their electricity consumption more, compared to lower income and wealth households. One reason

explaining this effect could be that the wealthier household place more solar panels on their roofs.

However, when consider the standard errors of these coefficients, we can not say that there is a

significant difference across different household wealth levels. Similar to the heterogeneity analysis

concerning solar adoption in Table 5, we can say that we would probably need a larger sample to

investigate heterogeneity more thoroughly.

— Insert Table 7 —

5 Conclusion

Solar PV installations are an important means to increase renewable energy production, given the

ease of distributed installation, on rooftops of homes and commercial real estate buildings. To

stimulate the adoption of solar PV by homeowners, many governments have used a variety subsidy

programs targeting residential households. In the early years of the technology, such subsidies

were especially popular, and were aimed at promoting a new technology and reducing the negative

external effects of fossil fuel use. Although there is widespread use of this policy instrument across

countries, evidence on the effectiveness of such programs is limited. The few existing studies

that investigate the impact of solar PV subsidies on subsequent adoption typically make use of

a quasi-experimental approach to assess the effectiveness of subsidy provision on the reduction of

CO2 emissions. However, the presence of random policy assignment and parallel trends is easily
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violated here, and there exists a real concern for selection bias. In our study, we address this issue

through analyzing a natural experimental setting, where we can exploit exogenous variation in the

subsidy assignment.

We analyze a solar PV subsidy program in the Netherlands from 2008 to 2010. The

program offered a production-based compensation and targeted residential households. Due to

an over-subscription to the subsidy program, a lottery decided which households were accepted

to receive benefits. Through analyzing 200,000 aerial shots, We observe the actual solar adoption

decision of all applicants, and we combine this unique data set with detailed micro data on household

characteristics and energy use. We compare this data across the groups of applicants that were

accepted or rejected for the program. With a clean control group, we can thus measure the effect of

providing subsidy on subsidy applicants. This informs us about the effect of such policy incentives

on households that are inclined to respond to the subsidy application.

Using a logit estimation, we show that acceptance to the subsidy program leads to a 14.4%

increase in the likelihood to install solar panels. Moreover, we find that providing the subsidy also

affects other aspects of the adoption decision. In a cross-sectional analysis, we find that accepted

applicants that adopt solar panels do this 1.07 year faster, and install solar PV capacity that is

33.2% larger. Subsequently, we assess the effect of subsidy provision on electricity consumption.

The results of the difference-in-difference analysis show that accepted applicants have a 8.1% lower

electricity consumption, annually, as compared to the rejected applicants, in the period 5 years

after the installation of solar PV.

The results highlight that, without targeting, a subsidy program tends to attract a select group

of applicants. This group is wealthier, higher educated, younger, and uses more electricity. We

show that, within this group, giving a subsidy leads to a higher adoption rate, whereas the solar

PV is also installed earlier and in larger quantity. Moreover, we observe that overall electricity use

is lower. Although we find a significant effect, it is questionable whether this was a cost-efficient

allocation of taxpayer money. In order to assess the cost-effectiveness of this public spending

towards achieving the mitigation of CO2 emissions, we compare the costs of CO2 emissions in this

program with the market price of CO2. A back of the envelope calculation reveals that the costs

to reduce CO2 emissions by one ton with this subsidy program were e2,202. In 2008, the market

price for one ton of CO2 in the EU ETS system was e26. This finding implies that mitigating CO2

emissions through the subsidy program came at a substantial cost.

However, we solely evaluate the direct effect of the subsidy on electricity saving in this study.
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Potentially, solar adoption by the subsidy receiving households had spillover effects that we do

not measure at the moment, and that would justify the provision of subsidy. Future research,

for example, could investigate whether the PV installations of the subsidy receivers triggered

adoption by other households, an effect which has been found in e.g. Bollinger and Gillingham

(2012). Additionally, it could be that the solar subsidy leads to spillovers within households, i.e.

their investment in solar panels leads them to invest in other renewable energy or energy efficient

technologies in their home. Furthermore, the promotion of technological development, which would

lead to lower production costs, would be another factor to take into account (Van Benthem et al.,

2008).
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Figure 1: Time between subsidy application and solar adoption

Notes: The figure presents the timing (in years) of PV adoption for accepted and rejected applicants separately.

20



Figure 2: Electricity Consumption Over Time

Notes: This figure presents yearly electricity consumption of accepted and rejected applicants, and non-applicants over time
for the three subsidy waves. We measure net electricity consumption, meaning that all generated electricity is deducted
from the household’s electricity consumption.
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Table 1: Descriptive Statistics

(1) (2) (3) (4) (5) (6)

Applicants Non- T-test Accepted Rejected T-test
applicants applicants applicants

Annual Electricity consumption (kWh) 4,026 3,047 -979*** 4,012 4,042 30
(1,623) (1,520) (23) (1,610) (1,637) (48)

Number of household members 2.718 2.030 -0.688*** 2.717 2.720 0.003
(1.252) (1.111) (0.0170) (1.254) (1.250) (0.037)

Age of household head 51.884 56.655 4.771*** 51.776 51.998 0.222
(11.68) (15.68) (0.237) (11.67) (11.70) (0.351)

Number of children 0.704 0.334 -0.370*** 0.698 0.710 0.012
(1.064) (0.775) (0.011) (1.065) (1.064) (0.032)

Number of elderly (>65) 0.515 0.651 0.135*** 0.504 0.527 0.023
(0.987) (0.904) (0.013) (0.988) (0.986) (0.029)

Number of females 1.168 0.953 -0.215*** 1.169 1.167 -0.002
(0.888) (0.730) (0.011) (0.877) (0.899) (0.026)

Annual household income (e1000 ) 45.997 30.711 -15.286*** 45.824 46.180 0.356
(17.48) (15.16) (0.232) (17.24) (17.74) (0.525)

Household wealth (e1000) 289.1 144.2 -144.9*** 286.3 292.0 5.705
(222.5) (183.0) (2.802) (217.3) (227.9) (6.682)

Education level:

Primary school 0.007 0.040 0.033*** 0.005 0.008 0.003
(0.081) (0.196) (0.002) (0.072) (0.091) (0.002)

Secondary school 0.018 0.046 0.027*** 0.018 0.019 0.001
(0.135) (0.209) (0.003) (0.133) (0.137) (0.004)

Vocational school 0.108 0.144 0.036*** 0.105 0.111 0.006
(0.310) (0.351) (0.005) (0.307) (0.314) (0.009)

Higher vocational school 0.187 0.082 -0.105*** 0.188 0.186 -0.002
(0.390) (0.275) (0.004) (0.391) (0.389) (0.011)

Bachelor degree 0.012 0.005 -0.007*** 0.010 0.013 0.003
(0.108) (0.067) (0.001) (0.0999) (0.115) (0.003)

Master/PhD degree 0.122 0.039 -0.083*** 0.134 0.109 -0.025
(0.320) (0.188) (0.002) (0.331) (0.308) (0.009)

Dwelling type:

Apartment 0.034 0.271 0.237*** 0.035 0.034 -0.001
(0.182) (0.445) (0.006) (0.183) (0.181) (0.005)

Corner house 0.157 0.159 0.002 0.160 0.154 -0.006
(0.364) (0.366) (0.005) (0.366) (0.361) (0.010)

Semi-detached house 0.159 0.103 -0.056*** 0.160 0.158 -0.002
(0.366) (0.304) (0.004) (0.367) (0.364) (0.011)

Between house 0.288 0.358 0.070*** 0.298 0.278 -0.020
(0.453) (0.479) (0.007) (0.457) (0.448) (0.013)

Detached house 0.362 0.109 -0.254*** 0.348 0.377 0.029*
(0.481) (0.311) (0.004) (0.476) (0.485) (0.014)

Building construction year:

1900-1929 0.103 0.085 -0.018*** 0.101 0.106 0.004
(0.305) (0.279) (0.004) (0.302) (0.307) (0.009)

1930-1944 0.074 0.065 -0.008* 0.077 0.070 -0.007
(0.261) (0.247) (0.003) (0.267) (0.256) (0.007)

1945-1959 0.062 0.113 0.051*** 0.064 0.059 -0.005
(0.241) (0.317) (0.004) (0.246) (0.236) (0.007)

1960-1969 0.094 0.163 0.069*** 0.094 0.094 -0.000
(0.291) (0.369) (0.005) (0.292) (0.291) (0.008)

1970-1979 0.174 0.197 0.023*** 0.175 0.172 -0.003
(0.379) (0.398) (0.006) (0.380) (0.378) (0.011)

1980-1989 0.142 0.178 0.036*** 0.138 0.145 0.007
(0.349) (0.383) (0.005) (0.345) (0.353) (0.010)

1990-1999 0.235 0.146 -0.089*** 0.229 0.241 0.012
(0.424) (0.353) (0.005) (0.421) (0.428) (0.012)

>2000 0.117 0.052 -0.064*** 0.120 0.113 -0.008
(0.321) (0.222) (0.003) (0.325) (0.316) (0.009)

Number of observations 4,439 161,929 166,368 2,281 2,158 4,439

Notes: Table presents the descriptive statistics for all solar PV subsidy applicants, non-applicants, accepted and rejected applicants separately.
Column 1 provides information on all subsidy applicants in the years 2008, 2009, and 2010. The statistics are calculated based on the year
before subsidy application. Column 2 includes a random 1% of the sample of all Dutch households that did not apply to the subsidy program.
Columns 4 and 5 split up the group of applicants into the ones that were accepted and rejected for the subsidy program as a result of the lottery.
Standard deviations are given in parentheses. Columns 3 and 6 indicate the statistical significance of the differences in variables between two
groups. Standard deviations are reported in parenthesis. * P<0.05. ** P<0.01. *** P<0.001
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Table 2: Descriptive Statistics Subsidy Program

Subsidy year: 2008 Subsidy year: 2009 Subsidy year: 2010

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Accepted Rejected T-test Accepted Rejected T-test Accepted Rejected T-test

Solar adoption 0.676 0.524 -0.151*** 0.667 0.560 -0.117*** 0.691 0.520 -0.171***
(0.468) (0.500) (0.021) (0.468) (0.497) (0.018) (0.462) (0.500) (0.015)

# of panels 12.356 11.717 -0.639 15.043 13.702 -1.341*** 15.797 14.201 -1.596***
(7.341) (7.644) (0.451) (8.355) (8.062) (0.402) (8.526) (8.245) (0.324)

Size of panels 13.754 13.551 -0.204 17.235 15.900 -1.335** 18.345 16.905 -1.439**
(9.051) (9.135) (0.554) (10.55) (10.35) (0.513) (12.10) (14.34) (0.538)

Observations 4957 553 5510 1102 1667 2769 1282 4894 6176

Notes: Table presents the solar PV investment statistics for subsidy applicants in years 2008, 2009 and 2010 separately for accepted and rejected
households. We removed the top 5% outliers based on number of panels. Columns 3, 6 and 9 report the magnitude and statistical significance
of the differences in variables between accepted and rejected applicants. Standard deviations are reported in parenthesis. * P<0.05. ** P<0.01.
*** P<0.001
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Table 3: Estimation Results for Solar Adoption and Panel Size

(1) (2) (3) (4) (5) (6)
Solar adoption Solar adoption Solar adoption Panel size Panel size Panel size
(Sub-sample) (Sub-sample) (Full-sample) (Sub-sample) (Sub-sample) (Full-sample)

Accepted 0.113*** 0.118*** 0.144*** 0.201*** 0.219*** 0.332***
(0.013) (0.019) (0.007) (0.0369) (0.0528) (0.0231)

Household characteristics No Yes No No Yes No
Home characteristics No Yes No No Yes No
Observations 4,816 2,218 14,891 4,816 2,218 14,891

Notes: Table provides the average marginal effects calculated based on the logit estimation results for solar PV installation decision (columns
1, 2 and 3) and OLS estimation results for installed panel size (columns 4, 5 and 6). The dependent variable in columns 1, 2 and 3 is a binary
variable that takes one if a household installs solar PV and zero otherwise. The dependent variable in columns 4, 5 and 6 is the log size of
installed solar PV in m2. This variable takes zero if the household does not install solar PV. Columns 1,2,4 and 5 report the results for the
sub-sample for which the household-house characteristics information is available. Standard errors are given in parentheses. * P<0.05. **
P<0.01. *** P<0.001.
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Table 4: OLS Regression: Subsidy Effect on Timing

(1) (2) (3)
Timing Timing Timing

(Sub-sample) (Sub-sample) (Full sample)
Accepted -1.119*** -0.632*** -1.070***

(0.0795) (0.0924) (0.0455)
Constant 3.284*** 3.428*** 3.261***

(0.0868) (0.593) (0.0500)
Observations 3,031 1,383 8,754
R-squared 0.063 0.060 0.060
Household characteristics No Yes No
Application year FE Yes Yes Yes

Notes: mean coefficients; sd in parentheses * P<0.05. ** P<0.01. *** P<0.001. Sample includes all solar PV installing subsidy applicants.
Timing is denoted as years in between the application year and the installation year.
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Table 5: Marginal Subsidy Effects Solar Adoption: Heterogeneity Analysis

Solar adoption

Accepted 0.644***
(0.0960)

Accepted*Age High -0.122
(0.131)

Age High 0.291***
(0.125)

Accepted*Wealth High -0.146
(0.131)

Wealth High 0.247***
(0.119)

Constant -0.0797
(0.246)

Observations 4,816
Household Characteristics YES

Notes: The dependent variable is a binary variable that takes one if a household installs solar PV and zero otherwise. The Table contains
interaction terms for age and wealth, where low contains the bottom 50% and high the upper 50% of the sample based on the distribution of
the observable characteristics. * P<0.05. ** P<0.01. *** P<0.001.

26



Table 6: D-i-D estimation Subsidy Effect on Electricity Consumption: 1-year and 5-year Effects

(1) (2) (3) (4) (5) (6)
1 year 1 year 1 year 5 year 5 year 5 year

(Sub-sample) (Sub-sample) (Full-sample) (Sub-sample) (Sub-sample) (Full-sample)

Accepted*Post -0.0374** -0.0246 -0.0592*** -0.0393*** -0.0294** -0.0810***
(0.0171) (0.0214) (0.0144) (0.0110) (0.0138) (0.00920)

Accepted -0.00127 0.000260 -0.00573 -0.00127 0.000260 -0.00573
(0.00865) (0.0106) (0.00666) (0.00900) (0.0111) (0.00747)

Post -0.0339* -0.0643*** -0.0440*** -0.0322** -0.0598*** -0.0243*
(0.0193) (0.0242) (0.0163) (0.0157) (0.0195) (0.0138)

Constant 8.145*** 8.137*** 8.262*** 8.145*** 8.137*** 8.262***
(0.0101) (0.0128) (0.0283) (0.0105) (0.0134) (0.0317)

Observations 13,220 8,133 36,226 26,629 15,771 72,869
R-squared 0.005 0.011 0.005 0.029 0.065 0.065
Household characteristics NO YES NO NO YES NO
Year FE YES YES YES YES YES YES

Notes: Mean coefficients; sd in parentheses * P<0.05. ** P<0.01. *** P<0.001. Dependent variable: log electricity consumption. Pre period: 3
years before the subsidy. Post period: 5 years after the subsidy. Period 0 (subsidy application year) is excluded from the analysis. 5% outliers
in electricity consumption removed.
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Table 7: D-i-D Estimation Subsidy Effect on Electricity Consumption: subsample analysis

Age Age Wealth Wealth
Low High Low High

Accepted*Post -0.0389** -0.0392** -0.0324** -0.0455***
(0.0151 ) (0.0161 ) (0.0160) (0.0151)

Accepted -0.00830 0.00672 -0.00127 -0.00275
(0.0119 (0.0136 (0.0133) (0.0122)

Post -0.0300 -0.0313 -0.0196 -0.0427*
(0.0217 ) (0.0227 ) (0.0231) (0.0213)

Constant 8.177*** 8.105*** 8.123*** 8.169
(0.0140 ) (0.0157 ) (0.0150) (0.0147)

Observations 13,117 13,512 13,273 13,356
R-squared 0.024 0.029 0.020 0.039
Household char. NO NO NO NO
Year FE YES YES YES YES

Notes: Mean coefficients; sd in parentheses * P<0.05. ** P<0.01. *** P<0.001. Dependent variable: log electricity consumption. Pre period: 3
years before the subsidy. Post period: 5 years after the subsidy. Period 0 (subsidy application year) is excluded from the analysis. 5% outliers
in electricity consumption removed.
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A Appendix for Online Publication

Table A.1: Logit Estimation Results for Application and Acceptance to Subsidy Program

(1) (2)
Application Acceptance

Number of household members 0.145*** 0.070
(0.044) (0.095)

Age of household head -0.004 0.001
(0.002) (0.005)

Number of children 0.004 -0.084
(0.050) (0.106)

Number of elderly (>65) -0.024 -0.098
(0.032) (0.065)

Number of females -0.112*** -0.043
(0.040) (0.076)

Annual household income (e1000) 0.010*** -0.004
(0.001) (0.002)

Household wealth (e1000) 0.001*** 0.000
(0.000) (0.000)

Education level

Secondary school 0.536** -0.076
(0.216) (0.430)

Vocational school 1.099*** 0.053
(0.190) (0.379)

Higher vocational school 1.925*** 0.211
(0.190) (0.377)

Bachelor degree 2.388*** -0.059
(0.235) (0.459)

Master/PhD degree 2.187*** 0.330
(0.194) (0.384)

House size (m2) 0.005*** -0.000
(0.000) (0.001)

Building construction year

1930-1944 -0.253** 0.246
(0.104) (0.197)

1945-1959 -0.275** 0.202
(0.109) (0.210)

1960-1969 -0.390*** -0.0366
(0.103) (0.198)

1970-1979 -0.507*** 0.112
(0.0915) (0.175)

1980-1989 -0.352*** 0.088
(0.090) (0.173)

1990-1999 -0.138* 0.157
(0.083) (0.156)

2000+ 0.136 0.214
(0.092) (0.170)

Dwelling type

Corner house 1.504*** -0.0228
(0.128) (0.252)

Semi-detached house 1.679*** -0.038
(0.131) (0.255)

Between house 1.340*** 0.015
(0.120) (0.240)

Detached house 2.020*** -0.017
(0.132) (0.251)

Constant -7.319*** -0.110
(0.257) (0.515)

Number of observations 60,913 2,218

Notes: Table provides the logit estimation results for subsidy application decision (column 1) and subsidy provision after application (column 2). The
dependent variable in column 1 is a binary variable that takes one if households applies for solar PV subsidy program and zero otherwise. The dependent
variable in column 2 is a binary variable that takes one if the application for the subsidy program is accepted and zero otherwise for the applying
households. The base category for education level is ”primary school”, for building construction period it is ”1900-1929” and for dwelling type it is
”apartment”. Standard errors are given in parentheses. * P<0.05. ** P<0.01. *** P<0.001.
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