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Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A 

Spatial Cross-Validation Approach 

 

Abstract 

Data-driven machine learning algorithms have initiated a paradigm shift in hedonic house price and 

rent modeling through their ability to capture highly complex and non-monotonic relationships. 

Their superior accuracy compared to parametric model alternatives has been demonstrated 

repeatedly in the literature. However, the statistical independence of the data implicitly assumed by 

resampling-based error estimates is unlikely to hold in a real estate context as price-formation 

processes in property markets are inherently spatial, which leads to spatial dependence structures in 

the data. When performing conventional cross-validation techniques for model selection and model 

assessment, spatial dependence between training and test data may lead to undetected overfitting 

and over-optimistic perception of predictive power. This study sheds light on the bias in cross-

validation errors of tree-based algorithms induced by spatial autocorrelation and proposes a bias-

reduced spatial cross-validation strategy. The findings confirm that error estimates from non-spatial 

resampling methods are overly optimistic, whereas spatially conscious techniques are more 

dependable and can increase generalizability. As accurate and unbiased error estimates are crucial 

to automated valuation methods, our results prove helpful for applications including, but not limited 

to, mass appraisal, credit risk management, portfolio allocation and investment decision making. 

Keywords: Hedonic modeling; machine learning; spatial autocorrelation; spatial cross-validation; 

mass appraisal; automated valuation models 

 



3 

 

 

1 Introduction 

Real estate markets feature a spatial dimension that is pivotal to price and rent determination processes. 

The inherent spatial dependence in the economic value of assets cannot be ignored in hedonic models, as 

this would lead to spurious and biased results (Anselin, 1988; Can and Megbolugbe, 1997; Basu and 

Thibodeau, 1998). Guidance on how to account for spatial dependence in linear regression models is vast 

and remains the subject of many contributions to the hedonic and spatial econometric literature.  

Moving from parametric hedonic regression techniques to the universe of non-parametric 

statistical learning methods, the literature has brought forth a growing body of evidence that machine 

learning algorithms can provide superior predictive performance for complex spatial regression problems, 

including various applications to house price estimation (e.g., Kok et al., 2017; Mullainathan and Spiess, 

2017; Mayer et al., 2019; Hong et al., 2020; Pace and Hayunga, 2020; Bogin and Shui, 2020). To a great 

extent, the gains in explanatory power can be attributed to the flexibility of such models. This provides 

machine learning algorithms with the capability to exploit anisotropic and non-monotonic structures across 

space, which is of particular benefit when the spatial domain under investigation is a global one, as shown 

by Pace and Hayunga (2020). While this characteristic is a blessing when reproducing sample data, it can 

be a curse when predicting out-of-sample data since high flexibility is linked to overfitting, as demonstrated 

by Mullainathan and Spiess (2017) and Bogin and Shui (2020). Any kind of dependence structures in the 

data can exacerbate this problem, if not controlled for (Roberts et al., 2017). Thus, all the more surprising, 

little attention has been paid to the implications of spatial dependence in house prices and rents for the 

statistical validity of cross-validation (CV) errors, which are widely used to select and assess non-

parametric models. For CV errors to be valid estimates of predictive performance, observations must be 

statistically independent of each other (Bishop, 1995; Brenning, 2005; Varma and Simon, 2006). This 

assumption is unlikely to hold in a real estate context (Bourassa et al., 2010) because “[…] error variance 

is not equal to zero but may be a function of spatial proximity among houses”, as explained by Can and 

Megbolugbe (1997). 

Two main problems arise when applying random resampling techniques to spatially dependent 

data. First, spatially structured variation in the residuals may be absorbed by non-causal regressors, 

consequently leading to the selection of overly complex and overfitted models that do not perform well 

with unseen data. Second, spatial autocorrelation between training and test observations provides the 

predictor with information that is assumed to be unavailable during model training, thus inflating estimates 



4 

 

 

of predictive accuracy. In turn, this may hide the first problem as CV errors appear to be legitimate 

(Brenning, 2012; Roberts et al., 2017). In response, researchers from geoscientific modeling fields have 

developed spatially conscious resampling methods to address these problems.  

However, the adequacy of such techniques for hedonic house price models cannot be blindly 

assumed since prediction goals may differ. To the best of our knowledge, no research has thus far accounted 

for spatial dependence in algorithmic hedonic models by applying spatial resampling techniques. We 

believe that a sound understanding of the implications arising from spatial dependence is of great 

importance when applying machine learning algorithms to hedonic regression problems. Hence, this study 

aims to investigate the role of spatial autocorrelation on resampling-based model selection and model 

assessment of algorithmic hedonic methods, thereby evaluating the efficacy of spatial CV in contrast to 

non-spatial (i.e., random) CV. By doing so, we demonstrate the pitfalls of resampling-based performance 

evaluation and intend to raise awareness of the importance of spatially conscious resampling techniques in 

hedonic house price modeling.  

Based on a cross-section of apartment rents in Frankfurt, Germany, we train and evaluate tree-

based algorithms using spatial as well as non-spatial CV. We subsequently forecast out-of-sample data to 

assess the bias in error estimates associated with spatial autocorrelation. The results are put into a broader 

perspective by benchmarking our machine learning algorithms against a non-spatial ordinary least squares 

(OLS) and a spatial autoregressive framework, allowing for a relative comparison of bias and predictive 

performance. Lastly, we analyze the residual spatial autocorrelation to detect signs of overfitting to spatial 

structures in the data.  

To make informed decisions, the precise estimation of house prices and rents is imperative to 

parties in the real estate industry, such as investors, developers, lenders or regulators. Since CV is 

commonly used as an “out-of-sample experiment” (Mullainathan and Spiess, 2017) to assess the predictive 

accuracy of algorithmic hedonic models, a systematic bias in error estimates may have adverse effects on 

the allocation of both debt and equity (Kok et al., 2017). The results of this study prove helpful in increasing 

the reliability and generalizability of CV errors, thus containing valuable implications for mass appraisal 

practices, credit risk management, portfolio allocation as well as investment decision making.  

This paper is structured as follows: Section 2 elaborates the problems of spatially structured data 

and their implications for hedonic analyses in the most commonly applied parametric as well as non-

parametric regression frameworks, thereby providing an overview of the empirical literature on algorithmic 
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hedonic approaches with a focus on applied resampling strategies. Section 3 introduces the dataset, 

followed by a description of the study design and methodology. The empirical results are presented and 

discussed in section 4 and the final section 5 concludes.  

2 Hedonic Modeling of Spatially Structured House Prices and Rents 

In his 1970 study on urban growth in the Detroit region, W. R. Tobler invoked his well-cited first law of 

geography, stating that the outcomes of nearby events correlate stronger than those of more distant events. 

Transferred to a housing context, this implies that the economic value of housing at any given location in 

geographic space depends, amongst other aspects, on the value of housing in neighboring locations. This 

deduction is well underpinned by spatial econometric as well as land economic theory for several reasons, 

such as spatial spillover effects (i.e., adjacency effects) and neighborhood effects (Can, 1992). Moreover, 

spatial clustering of house prices and rents may originate from a high correlation in the utility of the 

underlying houses derived from their structural characteristics (Basu and Thibodeau, 1998) and their fixed 

location in geographic space (Can and Megbolugbe, 1997; Osland, 2010), both of which determine the 

economic value of housing.  

This leads to the conclusion that space is a fundamental factor that drives price formation processes 

in housing markets, subsequently resulting in two critical characteristics of housing market data: First, 

spatial autocorrelation, which is spatial dependence in price and rent determination processes; second, 

spatial heterogeneity, defined as the systematic variation in the behavior of price and rent formation 

processes across space (Anselin, 1988; Can and Megbolugbe, 1997). As stated by Osland (2010), one can 

assume that “[…] a mixture of these effects will be present in all housing market cross-section data”. This 

poses important methodological implications on both parametric and non-parametric hedonic regression 

frameworks, which will be discussed below. 

2.1 Parametric Hedonic Models 

The economic theory of hedonic pricing in a housing context dates to Rosen (1974), who implemented the 

derivation of implicit prices of hedonic characteristics using a least squares estimator. Due to their 

efficiency and ease of interpretability, least squares estimators have established themselves as the standard 

econometric approach to hedonic house price modeling. Likewise, the concept of hedonic price modeling 

has been successfully transferred and applied to the determination of apartment rents (e.g., Sirmans et al., 

1989; Sirmans and Benjamin, 1991; Allen et al., 1995). 
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2.1.1 Implications of Spatial Dependence  

Independent and identically distributed errors with a zero mean and constant variance are crucial Gauss-

Markov assumptions to produce consistent and efficient estimates in a least squares context (Wooldridge, 

2016). Spatial autocorrelation and spatial heterogeneity in the residuals violate these assumptions, resulting 

in unreliable confidence intervals and biased t-statistics, which lead to spurious statistical inference 

(Anselin, 1988; Basu and Thibodeau, 1998). Depending on the underlying spatial processes causing spatial 

effects, even point estimates might be biased and lead to erroneous results (Pace and LeSage, 2010).  

Moreover, endogeneity is likely to occur due to omitted variable bias, measurement errors in the 

independent variables or feedback loops induced by adjacency effects. The explanatory power of spatial 

effects not explicitly reflected in the model specification is picked up by the error term or by covarying 

explanatory variables instead, leading to biased estimates and non-normality of the errors (LeSage and 

Pace, 2009). Even if spatial controls are included in the regression equation, the assumption of linearity in 

the functional form requires their relationship with the dependent variable to be constant across space. 

However, in the real world, such relationships are seldom linear and monotonic nor isotropic since slopes 

are likely to vary by distance and direction (Osland, 2010). Non-stationarity across space will persist as 

spatial heterogeneity in the residuals, violating the crucial OLS assumption of homogeneity in the errors.  

It can be concluded that both theory, as well as empirical research, suggests that the Gauss-Markov 

assumptions underlying traditional OLS estimators cannot be naturally presumed in a real estate context 

(Can and Megbolugbe, 1997; Bourassa et al., 2010; Cajias and Ertl, 2018), resulting in biased and 

inconsistent least squares estimates as well as spurious inference. 

2.1.2 Accounting for Spatial Dependence 

Spatial autoregressive models are the typical statistical instruments to consider spatial effects in parametric 

frameworks. They control for spatial dependence by explicitly incorporating the underlying correlation 

structures as spatial lags in their functional form (see Cliff and Ord, 1973; Anselin, 1988; Cressie, 1993; 

Manski, 1993; Kelejian and Prucha, 1998; LeSage and Pace, 2009). As the necessity to account for spatial 

effects in linear models is well understood, spatial autoregressive, as well as other spatial modeling 

alternatives, are widely applied and discussed in a real estate context (e.g., Pace and Gilley, 1997; Case et 

al., 2004; Militino et al., 2004; James et al., 2005; Bourassa et. al., 2007; 2010; Osland, 2010; Füss and 

Koller, 2016; Cajias and Ertl, 2018). Although such methods have been demonstrated to reduce residual 
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spatial autocorrelation if applied carefully, the models continue to be linear, limiting their ability to capture 

highly complex and multi-dimensional relationships in the formation of house prices and apartment rents.  

2.2 Non-Parametric Hedonic Models and Cross-Validation 

As the real world can be more accurately described by logarithmic, exponential or step functions, the 

increasing availability of data together with technical progress in computational power has triggered the 

consideration of more flexible non-parametric machine learning methods for the problem of hedonic house 

price and rent modeling. In principle, such data-driven approaches do not rely on any a priori assumptions 

about the distributions of the errors, nor the functional form 𝑓(𝑥) that explains 𝑖 house prices 𝑦𝑖  using 𝑗 

regressors 𝑥𝑖𝑗 , but approximate the shape of 𝑓(𝑥) by fitting a spline to the data (James et al., 2013).  

However, their high flexibility makes them prone to overfitting, which is why modern statistical 

tools rely on resampling methods for model selection (i.e., selecting an appropriate level of regularization 

to approximate the shape of 𝑓(𝑥) during hyperparameter tuning) and for model assessment (i.e., assessing 

the test error rate of the selected model 𝑓(𝑥) to evaluate its performance). Resampling is typically 

performed using cross-validation, during which observations are randomly partitioned into mutually 

exclusive training and test subsets, whereby the predictor is fitted on the training data and evaluated on the 

respective test data (Stone, 1974; Snee, 1977). This concept can be thought of as creating “[…] an out-of-

sample experiment inside the original sample”, as described by Mullainathan and Spiess (2017). 

In its most simple form, cross-validation randomly divides the data into two subsets, that is a 

training set and a validation (i.e., holdout) set based on a given percentage split. Subsequently, the model 

is fitted on the training sample, which is then used to predict the responses from the validation sample. This 

holdout strategy has been widely applied in the algorithmic hedonic house price literature. Worzala et al. 

(1995), Din et al. (2001), Peterson and Flanagan (2009) as well as Chiarazzo et al. (2014) use this technique 

for model assessment of artificial neural networks (ANNs), and Yoo et al. (2012), Kok et al. (2017) as well 

as Péréz-Rave et al. (2019) to validate different tree-based algorithms such as regression trees (RT), random 

forest regression (RFR), gradient tree boosting (GTB) and extreme gradient boosting (XGB). Lam et al. 

(2009), Antipov and Pokryshevskaya (2012), McCluskey et al. (2013) and Bogin and Shui (2020) 

benchmark different machine learning approaches, including support vector regression (SVR), shrinkage 

estimators (e.g., LASSO) as well as neural networks and tree-based methods using error estimates from a 

holdout sample. The applied split ratios vary between 60 to 80 percent for the training data and 40 to 20 

percent for the test data, respectively. Such holdout strategies are computationally inexpensive and easy to 
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implement. However, the test error rate may be heavily dependent on which observations are held out for 

validation and used for training, resulting in a potential bias in the error estimates (James et al., 2013).   

To address this form of bias, k-fold cross-validation has been introduced to the statistical 

community (Lachenbruch and Mickey, 1968; Efron, 1983). During k-fold cross-validation, the data is 

partitioned into k mutually exclusive subsets of equal size. Subsequently, each of the k folds is once used 

as a test set and the remaining k – 1 folds are used to calibrate the model, consequently yielding k estimates 

of prediction error that are then averaged. This strategy attempts to generate more robust and reliable 

approximations of out-of-sample predictive performance. In a real estate hedonic context, k-fold cross-

validation has gained in popularity during the past decade. Park and Bae (2015), Gu and Xu (2017), Čeh et 

al. (2018), Chin et al. (2018) as well as Pace and Hayunga (2020) apply k-fold cross-validation to evaluate 

the performance of tree-based methods. Applications to a broader spectrum of machine learning algorithms, 

including ANNs, SVR, k-nearest neighbors, shrinkage estimators as well as ensembles of regression trees 

using boosting and bagging techniques, can be found in Zurada et al. (2011), Mullainathan and Spiess 

(2017), Baldominos et al. (2018), Mayer et al. (2019), Hu et al. (2019), Ho et al. (2020) as well as Rico-

Juan and Taltavull de La Paz (2021). In all those studies, the applied number of folds is either five or ten, 

except for Mullainathan and Spiess (2017), who set k equal to eight. 

2.2.1 Implications of Spatial Dependence 

Although cross-validation proves to be decisive in reducing bias in error estimates, any kind of resampling 

technique is subject to one central assumption. By conducting an out-of-sample experiment that draws 

random observations from the data that are then used to approximate prediction errors, CV attempts to 

simulate unseen data. For cross-validation to yield unbiased prediction error estimates, statistical 

independence between training and test observations is required (Bishop, 1995; Brenning, 2005; Varma 

and Simon, 2006). Consequently, the meaningfulness of the resulting CV errors as a robustness test for out-

of-sample predictive performance is highly reduced in spatial modeling fields where the independence 

assumption is violated (Le Rest et al., 2014). More specifically, spatial dependence structures in the data 

cause two main problems in the workflow of machine learning algorithms. 

First, regressors are often covarying with unexplained spatial dependence structures in the 

residuals. During hyperparameter tuning, the model may overfit these spatial structures to non-causal, but 

covarying regressors in the attempt to optimize model performance, thereby reducing or completely 

absorbing unexplained structured covariation from the residuals. This may lead to a selection of overly 
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complex models that can reproduce the training data but may not generalize well to unseen data (Can and 

Megbolugbe, 1997; Le Rest et al., 2014; Roberts et al., 2017; Meyer et al., 2019). Second, when the sample 

from the validation fold is drawn from the same dependence structure as the training folds due to spatial 

proximity, the predictor may obtain information from the spatially autocorrelated test data that is assumed 

to be unavailable to the model during training. This unauthorized glimpse on the test data results in 

approximations of predictive power that may be overly optimistic and thus not representative for unseen 

data with different spatial structures (Picard and Cook, 1984; Hastie et al., 2009; Le Rest et. al., 2014; 

Trachsel and Telford, 2016; Roberts et al., 2017; Schratz et al., 2019; Lovelace et al., 2019).  

In a real estate context, such cases of poor out-of-sample predictive performance were, for 

instance, reported by Mayer et al. (2019) for their random forest. Bogin and Shui (2020) report significant 

overfitting using a random forest with a deviation of 22.1 percentage points in the R² compared to in-sample 

cross-validation errors. Mullainathan and Spiess (2017) demonstrated a similar bias in cross-validation 

errors for both bagging and boosting with 39.6 percentage points discrepancy in the R² of the random forest 

and 8.7 percentage points in the boosting trees. 

2.2.2 Accounting for Spatial Dependence 

One possible approach to account for spatial dependence structures in the selection and assessment of non-

parametric models is by using resampling techniques that split the data strategically by considering spatial 

proximity among observations rather than randomly. Spatial partitioning can be designed in many ways. 

However, the general concept is to increase independence between training and test data by clustering or 

blocking the individual folds across space or by removing training data within a specific distance band of 

each test point, such that performance is evaluated on more distant events that tend to be less correlated to 

the training sample (Tobler, 1964; Trachsel and Telford, 2016; Roberts et al., 2017). In a spatial context, 

such approaches have been introduced to the statistical community under many different terms. These 

include “spatial cross-validation” (Brenning, 2005; 2012), “spatial leave-one-out cross-validation” (Le Rest 

et al., 2014), “h-block cross-validation” (Trachsel and Telford, 2016), “spatial k-fold cross-validation” 

(Pohjankukka et al., 2017), “spatial buffering”, “spatial blocking”, “environmental blocking” (Valavi et al., 

2018) and “leave-one-cluster-out cross-validation” (Meyer et al., 2019). Following the methodology and 

terminology of Brenning (2012), we will continue naming this concept spatial cross-validation in the 

remainder of this study. The conceptual difference between random and spatial partitioning of folds during 

cross-validation is visualized in Figure 1 based on an example with three folds. 
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Since “[…] the adequacy of non-spatial partitioning techniques for spatial datasets can be 

questioned” as stated by Schratz et al. (2019), spatial cross-validation methods are widely used in scientific 

fields such as climatology (Trachsel and Telford, 2016), ecology (Bahn and McGill, 2007; Schratz et al., 

2019), remote sensing (Brenning, 2012; Meyer et al., 2019) and geosciences (Brenning, 2005). The need 

for spatial resampling has been stressed repeatedly in those fields, yet, its suitability and efficacy for real 

estate data has not been investigated thus far. Findings from other disciplines cannot be easily transferred 

to a real estate context since the objectives and circumstances under which predictive models are designed 

may differ. Despite compelling arguments to use spatial cross-validation when modeling data in geographic 

space, there is good reason to be cautious when applying such methods to a real estate hedonic context. 

Spatial partitioning may hide entire ranges or functional relationships of regressors during training, 

thereby introducing extrapolation to a model that is supposed to interpolate and consequently resulting in 

overly pessimistic estimates of prediction errors during model assessment (Snee, 1977; Roberts et al. 2017). 

However, the model can also be underfitted when the selected level of regularization is too high which may 

result in poor predictions (Kok et al., 2017). This dichotomy is particularly pronounced in real estate related 

regression tasks where high levels of spatial dependence tend to exist between observations but the 

prediction goal is usually dominated by the interpolation of existing properties within a delineated market. 

In cases where both the degree of spatial autocorrelation in the data and the extrapolation range are low, 

conventional cross-validation techniques that split the data randomly may be appropriate for performance 

optimization and evaluation. However, in situations where a model predicts outside the spatial domain of 

the training data and correlation structures between the residuals and non-causal regressors differ from the 

structures that were overfitted to non-causal regressors, random partitioning may yield unsatisfactory 

results (Bahn and McGill, 2007; Roberts et al., 2017).  

As shown by Gröbel and Thomschke (2018) and Hong et al. (2020), prediction accuracy also 

depends on the spatial density of the sample locations. This is in line with Bahn and McGill (2007), who 

state that “[…] the sparser the existing coverage of sample locations for the dependent variable, the worse 

the spatial interpolation will perform”. In other words, non-spatial CV may perform well in samples with a 

high spatial density but not so well if the distribution of observations across space is sparse, as this typically 

increases extrapolation. Furthermore, this implies that bias in prediction accuracy may be a function of 

distance from the city center since observations usually become sparser farther outside where housing 

structures are less dense and markets tend to be less active (Gröbel and Thomschke, 2018). 
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Although many studies on hedonic machine learning approaches exist, spatial cross-validation has 

so far not been applied to a real estate context, let alone to algorithmic hedonic house price and rent 

estimation problems. Reported cross-validation errors are almost consistently lower than errors of 

alternative parametric methods, such as least squares or spatial autoregressive frameworks. In particular 

tree-based ensemble learners, such as bagging (Breiman, 2001) and boosting (Friedman, 2001), have been 

shown to be most promising for house price estimation compared to alternative machine learning methods 

(see Antipov and Pokryshevskaya, 2012; Kok et al., 2017; Mullainathan and Spiess, 2017; Baldominos et 

al., 2018; Mayer et al., 2019, Hu et al., 2019; Ho et al., 2020). Pace and Hayunga (2020) find evidence that 

the gains in explanatory power achieved by boosting and bagging algorithms are mainly attributable to the 

exploitation of spatial structures in the data. Consistent with the previously outlined logic presented by 

Bahn and McGill (2007) as well as Gröbel and Thomschke (2018), they find the error variance of bagging 

to increase the farther the model extrapolates to a global domain which could indicate that the model is 

overfitted to the spatial structures of more frequently observed houses in central districts. This notion is in 

line with Bogin and Shui (2020) who found a significant degree of overfitting in their random forest 

measured by a holdout strategy using appraisal records of homes in rural areas.  

The extensive scientific debate about spatial dependence in real estate together with the 

concurrent, steadily growing corpus of literature on machine learning applications for house price and rent 

predictions motivates us to assess the sign and magnitude of potential bias associated with spatial 

dependence when using conventional CV methods for model selection and model assessment. Moreover, 

we investigate whether spatial cross-validation is an appropriate technique to account for spatial 

autocorrelation in apartment rents when using predictive machine learning algorithms, although the primary 

intention is to interpolate within a delineated spatial polygon.  

3 Data and Methodology 

We first train and cross-validate tree-based algorithms using a cross-section of apartment rents, thereby 

applying random as well as spatial partitioning during the cross-validation procedure for both, model 

selection and model assessment. With everything else remaining equal, there should be no substantial 

difference in the selected hyperparameters nor the cross-validation errors between spatial and non-spatial 

models if the assumption of spatial randomness was fulfilled. In a second step, we calculate the out-of-

sample predictive performance of the models by estimating the data from a holdout sample one quarter 

ahead. We then analyze the difference between in-sample cross-validation errors and the true out-of-sample 
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prediction errors to assess the bias associated with the respective partitioning techniques. A non-spatial 

linear model, as well as spatial autoregressive models, are used as points of reference. Third, we evaluate 

the deviation in bias when excluding spatial control variables from the model specification. Based on the 

hypotheses elaborated in section two, we would expect the bias to increase in non-spatial modeling 

frameworks when spatial information is absent due to overfitting unexplained spatial dependence structures 

in the data to covarying but non-causal regressors. This will be more closely evaluated in a fourth step by 

analyzing the residual spatial autocorrelation in all model alternatives. 

3.1 Data Description 

Our sample consists of a pooled cross-section of apartment rents from the Frankfurt residential market 

spanning the period from January 2019 through March 2020. The data were sourced from German multiple 

listing systems (MLS) and are confined to apartment rentals excluding single, semi-detached and terraced 

houses, student apartments, senior living accommodations, furnished co-living spaces and short-stay 

apartments. Data cleaning was performed to account for duplicates, missing values and erroneous data 

points. The final sample comprises a total of 9,256 asking rents observed on a monthly scale, including the 

properties’ most important structural attributes and equipment as well as their coordinates.  

The building age was calculated relative to the year 2018, and values with a construction date 

before 1900 were trimmed to avoid disproportionate leverage of those observations. The entry date was 

transformed into a decimal number in years, and logarithmic transformations were used for the apartment 

rent and living area. Distances to nearby amenities were added using an Open Street Maps API to control 

for locational and neighborhood effects. The summary statistics of the features univariate distributions is 

presented in Table 1. The number of entries in each month is distributed uniformly throughout the sample 

period without a significant time trend in apartment rents, as shown in Table 2. 

The spatial distribution of the data in Figure 2a does not seem to exhibit any distinct location bias, 

albeit the spatial density of observations increases toward the city center. As described by Gröbel and 

Thomschke (2018), this is not surprising as building structures are denser in central areas, which are, 

moreover, predominantly occupied by younger and more mobile tenants, resulting in higher fluctuation 

rates and subsequently more frequent rental offers compared to the outskirts. The average distances to the 

1, 5, 10, 30, and 100-nearest neighbors amounts to 0.02, 0.04, 0.06, 0.13 and 0.30 kilometers respectively. 

Aggregated on a ZIP-code level, Figure 2b indicates that more expensive apartments tend to be clustered 

in the city center and along the north-south axis. More formally, spatial clustering of apartment rents is 
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confirmed by the semi-variance of the log rent as depicted in Figure 3a. The empirical Matérn semi-

variogram model suggests a spatial autocorrelation range of 0.58 kilometers, which is the distance up to 

which spatial dependence between observations persists in the data (Cressie, 1993). In other words, an 

apartment in our sample has on average 168 neighbors that do not satisfy the assumption of independence. 

This number increases with spatial density and vice versa. The distribution of neighbors within the spatial 

autocorrelation range is presented in Figure 3b. 

3.2 Methodological Approach 

3.2.1 Parametric Models 

We use an ordinary least squares (OLS) estimator as non-spatial parametric benchmark model. Written in 

matrix notation, the multiple linear regression model follows a log-linear functional form of the relationship  

𝑌 = 𝛼 + 𝑋𝛽 + 𝜀 (1) 

with 𝑌 being the response vector with 𝑛 observations of log-transformed apartments rents, 𝛼 being a fixed 

intercept, 𝑋 representing regressor matrix with 𝑛 rows and 𝑝 columns, 𝛽 being the corresponding 𝑛 x 𝑝 

coefficient matrix and 𝜀 being the random error term vector of length 𝑛.  

Our modeling approach is based on the principle to avoid overfitting and bias in error estimates to 

isolate the bias originating from spatial dependence. We thus follow Harrell (2015) and Mayer et al. (2019) 

and exclude only regressors with almost no predictive power from the hedonic equation but, at the same 

time, refrain from the inclusion of interaction or quadratic terms to keep the models simple. We test the 

null hypothesis of spatial randomness in the OLS residuals by calculating the Moran’s I statistic (Cliff and 

Ord, 1973) and account for potential spatial dependence using the spatial econometric toolbox. 

Opposed to the spatial cross-validation technique (where spatially autocorrelated information is 

explicitly excluded from the model), the mechanism of spatial econometric models works the exact opposite 

way by explicitly mapping spatial interactions among neighboring observations as spatial lag terms in the 

functional form of the relationship. The spatial weight matrix 𝑊 formally defines the spatial relationship 

between observations. To identify the source of the underlying processes causing spatial effects in the data, 

a model specification search is conducted following the general to specific approach advocated by LeSage 

and Pace (2009) and LeSage (2014) starting from the Spatial Durbin Model (SDM)  

𝑌 = 𝛼 + 𝜌𝑊𝑌 + 𝑋𝛽 + 𝑊𝑋𝜃 + 𝜀 (2) 

as well as the Spatial Durbin Error Model (SDEM). 
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𝑌 = 𝛼 + 𝑋𝛽 + 𝑊𝑋𝜃 + 𝑢 (3) 

𝑢 = 𝜆𝑊𝑢 + 𝜀 (4) 

Subsequently, we perform likelihood-ratio tests to challenge the relevance of the autoregressive 

coefficients 𝜌, 𝜃, and 𝜆 from the SDM and the SDEM against more specific spatial model alternatives that 

include only one out of the two interactions respectively (Anselin, 1988; Anselin et al., 1996). As stated by 

LeSage and Pace (2009), this top-down approach has the advantage that the SDM still produces unbiased 

coefficient estimates even when the true data-generating process is a more specific model. 

3.2.2 Non-Parametric Models 

Among a wide variety of algorithmic hedonic methods evaluated in comparative studies, ensembles of 

regression trees using bagging and boosting techniques have consistently shown the most promising results 

concerning predictive power (see Antipov and Pokryshevskaya, 2012; Kok et al., 2017; Baldominos et al., 

2018; Mayer et al., 2019; Hu et al., 2019; Ho et al., 2020; Bogin and Shui, 2020).  

The idea behind a regression tree is to stratify the feature space into a set of 𝑀 disjoint intervals 

𝑅1, 𝑅2, … , 𝑅𝑀, each of which is assigned a constant 𝑐𝑚 as predicted value, being referred to as the leaf or 

terminal node of the tree (Breiman et al., 1984). Intervals are created by recursive binary partitioning at the 

nodes 𝑡𝑝, choosing a split-point 𝑠 of a particular feature 𝑥𝑗 in the process of solving a minimization problem 

that can be expressed as  

min
𝑗,𝑠

[min
𝑐1

∑ (𝑦𝑖 − 𝑐1)2 + min
𝑐2

∑ (𝑦𝑖 − 𝑐2)2
𝑥𝑖 ∈ 𝑅2(𝑗,𝑠)𝑥𝑖 ∈ 𝑅1(𝑗,𝑠) ]  

(5) 

under the conditions that  

𝑅1(𝑗, 𝑠) =  {𝑋|𝑋𝑗 ≤ 𝑠}   (6) 

𝑅2(𝑗, 𝑠) =  {𝑋|𝑋𝑗 > 𝑠}  (7) 

following the notation of Hastie et al. (2009). Each observation is subsequently passed down the tree 

branches by making binary decisions at each split following the feature values until the data point has 

reached its final leaf. As single regression trees tend to overfit easily and do not perform well on unseen 

data, we focus on ensembles of regression trees, more specifically the bagging-based random forest 

regression introduced by Breiman (2001) and the extreme gradient boosting algorithm developed by Chen 

and Guestrin (2016) which is an extension of the gradient tree boosting method dating to Friedman (2001). 

The bagging algorithm grows a forest of many individual but slightly different trees 𝑏 using 

bootstrapped training samples. Instead of pruning the trees, which is typically done to counteract the 



15 

 

 

overfitting of individual regression trees, the trees in a forest are grown deeply, resulting in more terminal 

nodes with fewer observations being allocated to the same constant 𝑐𝑚 as the predicted value. The minimum 

node size 𝑚𝑖𝑛𝑛𝑜𝑑𝑒, which is the smallest possible number of observations in each leaf, determines the depth 

of the tree. Deep trees can lead to overfitting, thus reacting very sensitively to changes in the training 

sample, whereas shallow trees may not pick up information from the data adequately, hence producing 

models which are underfitted (Kok et al., 2017). Consequently, the relatively deep trees in a forest have a 

high variance but low bias. The variance is then removed by averaging over the results of the 𝑏 bootstrap 

trees to increase robustness (Breiman, 1996; James et al., 2013). Unlike conventional forests, a random 

forest considers only a randomly selected subset of 𝑚 predictors from all available predictors 𝑝 at each 

split, thereby introducing an additional source of variation into the model to counteract overfitting. 

Boosting works somewhat similar, but unlike bagging, where trees are grown simultaneously and 

independently, boosted trees are grown sequentially using the residuals’ information content from 

preceding trees to continue learning. At each sequence, a new regression tree is fitted to the residuals of the 

previous tree and is added into the fitted function, thereby iteratively updating the model (James et al., 

2013). Model fit is improved with each iteration until the number of boosting rounds is exhausted. To avoid 

overfitting boosted trees, a shrinkage parameter η, also referred to as learning rate, is used to slow down 

the learning process by making the error corrections in each round more conservative. Like the random 

forest, the extreme gradient boosting algorithm is a more regularized alternative of the gradient boosting 

technique in the sense that it attempts to decorrelate the individual trees by using only a randomly 

subsampled portion 
𝑚

𝑝
 of features in each round to increase the robustness of the boosting trees.  

Generally speaking, model fit tends to increase with higher flexibility, such as a lower 𝑚𝑖𝑛𝑛𝑜𝑑𝑒, 

or a lower η. However, this is tied to the risk of overfitting the training data, subsequently resulting in poor 

generalizability of the models. Thus, a level of regularization has to be chosen to limit the flexibility of a 

model. As manual choice of these hyperparameter combinations is arbitrary and unlikely to yield 

satisfactory results, model selection is typically conducted using data-driven optimization by iteratively 

testing different hyperparameter combinations within a pre-defined search space and evaluating their 

performance based on cross-validation errors in the attempt to minimize a given loss function. Eventually, 

the set of hyperparameters yielding the lowest cross-validation error rate (that is, the best performance in 

the out-of-sample experiment) is chosen as the optimal hyperparameter combination (James et al., 2013). 

This approach is called grid search optimization and is a widely used algorithm for automated 
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hyperparameter tuning. For computational reasons, we restrict our search space to the three main tuning 

parameters of each model described above. For the random forest, these are the number of bootstrap trees 

𝑏, the number of available features 𝑚 at each split and the minimum node size 𝑚𝑖𝑛𝑛𝑜𝑑𝑒 in each terminal 

node. Likewise, the number of boosting rounds 𝑛𝑟𝑜𝑢𝑛𝑑𝑠, the column subsample 
𝑚

𝑝
 and the shrinkage 

parameter η are equally important to the boosting algorithm. As optimization criterion, we adopt the 

minimization of squared residuals from the least squares estimator. 

3.3 Performance Evaluation  

We measure predictive performance (i.e., the true error rate) of our models by predicting out-of-sample 

data from the first quarter of 2020, which is referred to as the “holdout sample” in the remainder of this 

study. The remaining “in-sample” data of 2019 is used to calibrate the models and approximate their out-

of-sample predictive performance (i.e., the expected error rate). The resampling strategies used for the steps 

of model selection as well as model assessment are outlined below.  

In the parametric world, model selection is performed manually by specifying a functional form 

of the estimator a priori rather than following a data-driven approach to maximize fit. Moreover, the 

flexibility of such models is usually restrained by linearity assumptions that make overfitting less of a 

problem. Thus, prediction errors of linear models are typically estimated by simple re-substitution of the 

data used for model fitting (Efron, 1983; Simon, 2007). We follow this standard statistical approach to 

approximate the predictive accuracy of the parametric benchmark models and calculate the true error rate 

by regressing the holdout data using the estimated parameters.  

As elaborated earlier, data-driven approaches require resampling methods such as cross-validation 

to calculate fair estimates of predictive performance. To isolate the effects of spatial dependence and allow 

for a fair comparison between random and spatial partitioning, the resampling strategy is designed with the 

principle to eliminate any bias resulting from sources other than spatial autocorrelation that could 

potentially distort our results. Thus, we perform k-fold cross-validation for model selection and model 

assessment to avoid that error estimates are biased by chance due to a specific training or validation set.  

It is worth mentioning that the choice of k is associated with a bias-variance trade-off, that is, the 

bias becoming smaller with each additional fold whereas the variance of the error estimates increases at the 

same time due to a higher correlation of the training sets (Hastie et al., 2009). As suggested by theory and 

empirical research, a 𝑘 between five and ten proves to be the best compromise in this trade-off (Kohavi, 
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1995; James et al., 2013). With the primary aim to reduce bias, we set 𝑘 to ten, as was also done by Park 

and Bae (2015), Chin et al. (2018), Hu et al. (2019) as well as Rico-Juan and Taltavull de La Paz (2021).  

Further following the logic that information flow between training and test observations leads to 

biased cross-validation errors, we apply a nested resampling strategy that strictly separates data used for 

model selection from data used for model assessment. This is important since assessing model performance 

on the same data used for model selection does not yield an unbiased estimate of prediction error but more 

of a re-substitution error (Varma and Simon, 2006). Thus, nested resampling consists of two resampling 

loops, that is the inner resampling loop for hyperparameter tuning (i.e., model selection), which is wrapped 

within the outer resampling loop for performance evaluation (i.e., model assessment) such that model 

selection and model assessment is repeatedly performed on mutually exclusive subsamples, thereby 

simulating independent data throughout the entire workflow of the algorithm (Simon, 2007).  

Following this strategy, the resulting cross-validation errors should, at least in theory, provide an 

unbiased picture of out-of-sample predictive performance to be expected from the models if the assumption 

of spatial randomness was fulfilled, thus enabling us to disentangle the effects of spatial dependence by 

using spatial CV. To implement spatial partitioning in our cross-validation procedure, we apply the 𝑘-

means clustering approach proposed by Brenning (2012). This involves forming 𝑘 equally sized groups 

(equal to the number of 𝑘 folds) by minimizing within-cluster variances. The algorithm automatically 

detects the centers of clusters using the point coordinates. 

Using spatial and non-spatial partitioning, our nested resampling strategy provides four 

alternatives to calculate cross-validation errors which are: 

i) non-spatial model selection + non-spatial model assessment,  

ii) non-spatial model selection + spatial model assessment,  

iii) spatial model selection + spatial model assessment, and  

iv) spatial model selection + non-spatial model assessment.  

The first alternative is the conventional “off-the-shelf” approach typically applied in the hedonic literature, 

although nesting is not common yet. In contrast, the third option describes a pure spatial approach that 

should reduce spatial dependence between training and test observations to a minimum but may result in 

too pessimistic expectations of predictive performance. As the prediction goal in a housing context is not a 

pure spatial one, the second and fourth alternative could potentially provide a fair compromise in the trade-

off between reduction of spatial autocorrelation and the extrapolation range introduced into the model.  
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To arrive at a final model that can predict the holdout data, all steps of the algorithm need to be 

executed once again, whereby the cross-validation in the outer loop is replaced by the holdout sample such 

that the full information from 2019 is used to train a model that predicts apartment rents from the first 

quarter of 2020 (Varma and Simon, 2006; Simon, 2007). Analogous to the nested resampling for the 

estimation of prediction error, optimal hyperparameters for the final prediction model are once again 

derived using spatial and non-spatial grid search CV resulting in two alternatives for the true error rate.  

Based on the true error rates, we benchmark predictive performance and determine the bias in 

error estimates. Model accuracy is assessed using the coefficient of determination (R²), the mean absolute 

error (MAE), the mean absolute percentage error (MAPE), and the root mean squared error (RMSE). To 

measure variation in the residuals, we calculate the interquartile range (IQR), the coefficient of dispersion 

(COD) and an error bucket that includes the proportion of predictions within ten percent of the true value 

(PE10). The mean percentage error (MPE) is used as a measure of precision. Subsequently, the asymptotic 

properties of all estimators are evaluated by comparing the distributions of error estimates resulting from 

the respective resampling strategies to the distributions of the true prediction errors. 

4 Results 

This section first presents the final model specifications and evaluates differences in hyperparameters 

selected by the automated grid search CV. Second, the results of the error-based model assessment are 

reported to determine the bias for the respective resampling strategies, and the asymptotic behavior of the 

estimators is discussed. Third, we investigate the residual spatial autocorrelation in each of the estimated 

models to draw conclusions on whether differences in the selected levels of regularization and the related 

model performance are linked to overfitting spatial structures in the data.  

4.1 Model Selection 

All variables listed in Table 1 were kept in the final model specification of the linear model. Following the 

principle to avoid overfitting, only the squared term for the building age and no interaction terms were 

additionally included. The resulting model specification serves as a baseline for all subsequent model 

alternatives and is hereinafter referred to as model specification “A”. We estimate an alternative model 

specification “B”, which does not consider locational and neighborhood characteristics in the regressor 

matrix, to see how the results change in the absence of spatial controls. All remaining modeling decisions 

for the linear models outlined below are based on specification A and were adopted for specification B. If 
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not stated otherwise, the presented results refer to specification A. The respective regression outputs of the 

least squares estimator are shown in Appendix 1.  

The Moran’s I statistic of the OLS residuals rejects the null hypothesis of spatial randomness in 

price formation processes at a close-to-zero level of significance. The likelihood-ratio (LR) tests of a 

restriction of the SDM confirms the common factor hypothesis and implies the presence of both endogenous 

as well as exogenous interaction effects, leading to the acceptance of the SDM. The relevance of the SDEM 

was further investigated as an alternative spatial model. Again, the LR-tests reject a simplification of the 

SDEM with p-values close to zero. We subsequently consider both the SDM as well as the SDEM as 

spatially conscious linear model alternatives. As spatial density of observations tapers toward the outskirts, 

we follow Pace et al. (2000) for the specification of 𝑊 and choose a 𝑘-nearest neighbors (𝑘-nn) matrix 

where each observation has a fixed number of 𝑘 neighbors. After evaluating different values for 𝑘, we 

eventually set the number of neighbors to 30, as this yields the best results without diluting spatial effects 

in the lag terms. Overall, results remain robust for different choices of 𝑘 as well as for distance-based 

matrices with different boundaries.  

The optimal hyperparameters selected by the grid search CV after 100 evaluations are shown in 

Table 3. For the random forest, there are no structural differences in the number of trees 𝑏 nor the number 

of features 𝑚 considered at each split, although spatial tuning seems to favor slightly higher values of 𝑚. 

Notable deviations can be observed in the minimum node size that determines the depth and, thus, the 

complexity of the individual trees in the forest. The non-spatial grid search CV consistently prefers a 

𝑚𝑖𝑛𝑛𝑜𝑑𝑒 between one and two, which is significantly lower compared to the spatial model that has on 

average a minimum node size of five. A 𝑚𝑖𝑛𝑛𝑜𝑑𝑒 of one provides the trees with the flexibility to have 

virtually infinite vertical growth, allowing them to remove all noise from the data (Kok et al., 2017). Or as 

expressed by Mullainathan and Spiess (2017), a tree which grows one leaf for each observation in the data 

“[…] will have perfect fit, but of course this is really perfect overfit”, consequently yielding unsatisfactory 

predictions for unseen data.  

A similar pattern can also be observed for the XGB. Again, there are no remarkable differences in 

the size of the column subsample 
𝑚

𝑝
. However, the spatial instantiation of the resample call in the inner loop 

requires on average only 405 boosting rounds versus 593 boosting rounds for the non-spatial CV. Although 

the rate η at which the boosting algorithm learns at each round is more conservative in the non-spatial 

model, a higher number of 𝑛𝑟𝑜𝑢𝑛𝑑𝑠 indicates excessive error corrections that may result in a model that 
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overfits the residuals. The selection of less complex models compared to the non-spatial tuning persists for 

model specification B, although the higher complexity of the non-spatial random forest is now even more 

distinct. These findings corroborate our hypotheses derived from studies in other fields such as Le Rest et 

al. (2014), Roberts et al. (2017) as well as Meyer et al. (2019), who state that non-spatial partitioning during 

resampling is associated with the choice of overly complex models if the data exhibits spatial dependence.  

4.2 Model Assessment 

The subsequent section discusses how the differences in model selection affect model accuracy and whether 

increased complexity is indeed linked to overfitting and vice versa. Therefore, we analyze the bias and the 

asymptotic properties of our estimated models by comparing the true one quarter ahead prediction error to 

the expected error rates resulting from the respective resampling strategies outlined in section 3.4. Bias is 

measured as the difference between the true error rate and the expected error rate. The aggregated 

performance measures are presented in Table 4.  

The re-substitution errors from the linear models are significantly lower than the true error rates 

on all accounts, which, however, is not surprising (Efron, 1983). Whereas this overoptimism is smallest for 

the SDM, the error estimates of the SDEM are even more biased than those of the OLS model. This is 

mainly attributable to the relatively weaker predictive performance of the SDEM, since re-substitution 

errors of both spatial models are only marginally different from each other. Having said that, it is worth 

mentioning that spatial autoregressive models are primarily designed for statistical inference rather than 

out-of-sample predictions.  

For the non-parametric models, one can see an improvement in all performance measures 

compared to the linear models, which is not surprising and in line with the literature (see Antipov and 

Pokryshevskaya, 2012; Yoo et al., 2012; Gu and Xu, 2017; Kok et al., 2017; Mullainathan and Spiess, 

2017; Čeh et al., 2018; Bogin and Shui, 2020; Pace and Hayunga, 2020). With respect to predictive power, 

the XGB yields the most accurate results, closely followed by the RFR. Interestingly, performance 

measures do not seem noticeably affected by the resampling strategy in the inner loop for hyperparameter 

tuning despite the higher levels of regularization in the spatial models. Hence, predictive power is almost 

identical no matter whether spatial dependence has been accounted for during tuning or not.  

Distinctive differences between spatial and non-spatial cross-validation can be observed for the 

outer resampling loop though. Compared to the true predictive performance, non-spatial CV errors are 

overly optimistic for both the RFR as well as the XGB. In contrast, spatial CV consistently yields overly 
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pessimistic but more reliable approximations of prediction errors compared to non-spatial CV errors. It is, 

moreover, noteworthy that non-spatial hyperparameter tuning combined with spatial performance 

evaluation results in the most pessimistic cross-validation errors for all measures except the MAE and the 

MAPE of the random forest. The understatement of predictive accuracy is not surprising in this case since 

the model was trained with the objective to interpolate and subsequently validated by extrapolating to a 

new spatial domain, thus yielding non-optimal results.  

The bias in non-spatial cross-validation errors is even more distinctive in panel B of Table 4. In 

contrast, the spatially conscious cross-validation errors now closely resemble the true prediction errors, 

thereby reducing bias to a minimum. As already anticipated, the results indicate that over-optimism in non-

spatial CV is likely to originate from spatial structures being overfitted to covarying but non-causal 

regressors during model training. This is particularly noticeable when locational and neighborhood controls 

are missing such that the spatial information content in the residuals is picked up by other attributes that 

are structured in space. Accounting for spatial dependence in the inner resampling loop had once again only 

a minor impact on both model accuracy and bias. Noteworthy, the non-parametric models are now 

outperformed by the SDM in terms of predictive accuracy, which drops only marginally compared to 

specification A. This demonstrates the high robustness of the SDM, which is able to capture spatial effects 

through the spatial lag terms even in a scenario where locational control variables are not available. 

Figure 4 presents the asymptotic distribution of the absolute percentage error. The density plots 

reveal a higher variance and a lower kurtosis for prediction errors estimated by spatial CV opposed to the 

true error distribution. In comparison, non-spatial CV underestimates prediction errors, particularly in the 

lower tails of the distribution where errors are close to zero. For both the RFR and the XGB, non-spatial 

error estimates are centered around values that are considerably lower than the true means whereas spatial 

error estimates are more dispersed. This is affirmed by both the higher deviation of spatial error estimates 

from the median true error represented by the coefficient of dispersion as well as their larger spread 

illustrated by the interquartile range. These findings again confirm our expectations derived from literature 

in other spatial modeling fields (see Le Rest et al., 2014; Roberts et al., 2017; Schratz et al., 2019). 

4.3 Residual Spatial Autocorrelation 

Finally, we analyze the spatial autocorrelation found in the residuals of the models after calculating the 

Moran’s I statistic to investigate whether overfitting is related to the exploitation of spatial dependence 

structures in the data. Since the relative magnitude of the Moran’s I is only meaningful for identical spatial 
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weight matrices, we also calculate the Z-scores as a standardized measure, which allows us to compare the 

spatial autocorrelation of in-sample and out-of-sample residuals (Anselin, 1995). The results are presented 

in Table 5.  

The spatial linear models successfully reduce spatial autocorrelation in the in-sample residuals, 

although there is still spatial information content left, which is consistent with the findings of Pace and 

Hayunga (2020). The non-spatial cross-validation errors of the random forest exhibit spatial autocorrelation 

of roughly the same magnitude as the spatial linear models. Interestingly, spatially cross-validated errors 

show a significantly higher degree of spatial autocorrelation that even exceeds the Z-score of the simple 

OLS model. The same applies to the boosted trees, although this method seems to understand spatial 

structures in the data slightly better. This may seem counterintuitive at first but knowing that non-spatial 

error estimates are biased downwards, the substantial differences in residual spatial autocorrelation between 

the spatial and the non-spatial cross-validation errors indicate that spatial partitioning in the outer 

resampling loop indeed prevents the models from exploiting unexplained spatially autocorrelated 

information from the test data during training. By and large, the outcomes are consistent for panel B but, 

unsurprisingly, the magnitude of spatial autocorrelation is in general higher as opposed to specification A, 

which further substantiates our hypotheses and underlines the importance of spatial cross-validation. 

Consistent with the results from section 4.2, the SDM does have a superior understanding of spatial 

dependence structures in the data compared to all other models when spatial variables are not considered. 

5 Conclusion 

Recent literature has brought forth an increasing body of evidence that demonstrates a superior predictive 

performance of machine learning algorithms compared to parametric models for complex spatial regression 

problems involving the estimation of house prices and rents. In non-parametric models, predictive 

performance is widely measured using resampling techniques such as cross-validation, which can be 

thought of as an out-of-sample experiment inside the original sample. This requires the statistical 

independence of the data to yield unbiased and meaningful prediction error estimates that can be used for 

model selection and model assessment. The inherent spatial dependence in house price and rent formation 

processes gives reason to question the validity of cross-validation errors in a hedonic context. Hence, this 

study investigates the adequacy of conventional 𝑘-fold cross-validation for the purpose of model selection 

and model assessment in an algorithmic hedonic context using tree-based boosting and bagging methods 
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and proposes a spatially conscious alternative that attempts to reduce bias in cross-validation errors by 

accounting for the spatial proximity of observations.  

Despite using a nested resampling strategy and applying column subsampling in our bagging and 

boosting algorithms to prevent overfitting, our results demonstrate that failing to account for spatial 

dependence during the cross-validation procedure still has two undesirable consequences. First, 

hyperparameter tuning using non-spatial grid search CV favors the selection of overly complex models that 

overfit spatial dependence structures in the training data, thereby compromising the models’ 

generalizability. Second, performance estimates are artificially inflated through the exploitation of spatial 

dependence structures during model training, resulting in overly optimistic error estimates when compared 

to the true prediction errors.  

In nested resampling approaches these two problems go hand in hand since the selection of overly 

complex models in the inner resampling loop is masked by overoptimistic accuracy measures during model 

assessment in the outer resampling loop. This can lead to spurious confidence in a model that overestimates 

predictive accuracy as nesting aims to simulate unseen data throughout the entire workflow of an algorithm, 

therefore suggesting unbiased error estimates (Varma and Simon, 2006). In contrast, spatial grid search CV 

prefers a higher level of regularization, thereby introducing extrapolation into the models, which results in 

error estimates that are slightly too pessimistic, yet closer to the true error rates.  

An analysis of the residual spatial autocorrelation provides evidence that the spatially conscious 

cross-validation technique hinders the algorithm from exploiting spatial dependence structures, thereby 

preventing overfitting. To see how the results vary with the extent to which spatial information is reflected 

in the feature space, we evaluate a second model alternative that does not consider spatial control variables. 

In this scenario, over-optimism in predictive accuracy is even more distinctive when spatial autocorrelation 

is not accounted for, whereas the spatial CV procedure yields almost unbiased estimates of the true 

prediction error that converge asymptotically closer to the true error distribution. A least squares model as 

well as a linear spatial autoregressive framework are furthermore used as points of reference to assess 

predictive accuracy. Whereas the boosting algorithm performs best when spatial controls are reflected in 

the model, the spatial durbin model outperforms the non-parametric model alternatives in the absence of 

spatial information in the regressor matrix, which stresses the importance of considering parametric model 

alternatives besides non-parametric models.  
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We therefore conclude that in a real estate hedonic context, state-of-the-art cross-validation does 

not yield unbiased estimates of prediction error even when applying methods that intend to counteract 

overfitting. Resulting cross-validation errors should rather be interpreted as an estimate of the lower bound 

of the true error rate. In contrast, spatial cross-validation errors tend to be slightly too pessimistic but more 

reliable estimates of prediction errors. Likewise, the more conservative spatial cross-validation errors can 

be regarded as an upper bound of prediction errors.  

Which strategy is ultimately more adequate needs to be critically questioned depending on the 

individual situation and is, amongst others, subject to the prediction goal (interpolation versus spatial 

extrapolation), the spatial density of observations in the study area and the availability of locational and 

neighborhood characteristics. That being said, we believe that, in general, the cost of a slightly too 

pessimistic perception of predictive accuracy is lower than having spurious confidence in a model’s 

capability to predict unseen data. Overstatement of predictive accuracy may withhold appraisers, 

underwriters, lenders, as well as portfolio and investment managers from appropriately reflecting the 

uncertainties associated with appraised values in their decision making and risk management, potentially 

leading to adverse effects in capital allocation.  

Endnotes 

1. As modeling choices may differ depending on whether analysis or prediction is the main objective of 

a study, we concentrate primarily on prediction and do not wish to draw any causal inference or 

conclusions of the market under investigation.  

2. Although the use of asking rents can been criticized since they may deviate from actual contract rents, 

multiple listing systems (MLS) provide a valuable data source for statistical learning applications due 

to their high frequency of occurrence and timely availability and have been repeatedly used in the 

algorithmic hedonic literature (e.g., Chiarazzo et al., 2014; Park and Bae, 2015; Baldominos et al., 

2018; Gröbel and Thomschke, 2018; Hu et al., 2019; Pérez-Rave et al., 2019; Pace and Hayunga, 2020; 

Rico-Juan and Taltavull de La Paz, 2021). Considering vacancy rates for dwellings in Frankfurt well 

below one percent, we can follow the rationale of Gröbel (2019) and assume that renters are price 

takers, such that there should be no notable differences between asking and contract rents. Besides that, 

deviations between asking and contract rents “[…] are not expected to lead to an error bias”, especially 

when hedonic characteristics are controlled for, as stated by Cajias (2018). We hence do not see any 

reason to question the validity of asking rents, especially in view of the objective of our study. 
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3. The systematic variation of rent formation processes across space should not introduce bias into cross-

validation errors since machine learning algorithms do not assume fixed hedonic pricing coefficients 

but have the flexibility to differentiate between spatially heterogeneous environments. In this study, 

spatial heterogeneity is, therefore, put aside and the focus lies on spatial autocorrelation only. 

4. Evidently, housing data not only exhibit high levels of spatial but also temporal dependence when 

pooled across time (Pace et al., 2000). In this study, we leave temporal aspects aside for future research 

and focus solely on space.  

5. One limitation of the selected 𝑘-means clustering cross-validation strategy (Brenning, 2012) is that full 

independence between training and test data can only be achieved if the distance between each pair of 

training and test observation exceeds the spatial autocorrelation range (Brenning, 2005; Le Rest et al., 

2014). This is unlikely to be the case for all observations in our resampling instantiation, especially for 

data points located at the borders of the spatial clusters. Nonetheless, we believe that the number of 

observations in each test fold is large enough to counteract structural overfitting, such that the impact 

on aggregated results should be minor. Following the suggestion of Roberts et al. (2017), we refrain 

from further reducing the number of 𝑘 folds in the cross-validation procedure since this would withhold 

too much information during training and may introduce unnecessary extrapolation into the models. 

6. All analyses and model estimations were executed using the open-source statistical programming 

language R under the version 4.0.4 (R Core Team, 2021). All machine learning algorithms and 

resampling techniques were employed using the mlr3 framework implemented by Lang et al. (2019), 

which is an ecosystem that facilitates a standardized interface to many existing packages in the R 

environment. To obtain reproducible results and to ensure that the instantiation of the resampling calls 

do not vary between the different models, which could distort the results, all outputs were produced 

with the same random number generator using the set.seed function in R.  

7. Estimations were executed on a standard 1.80GHz processor with four cores, eight logical processors 

and eight gigabytes of RAM using a 64-bit Windows operating system. After parallelization, the in-

sample estimation of the random forest required between 11 and 20 hours for each of the four estimated 

resampling alternatives, whereby spatial tuning in the inner resampling loop reduced estimation time 

by up to 43 percent. The much more efficient extreme gradient boosting algorithm needed only about 

3 to 3.5 hours respectively with the spatial tuner being slightly less time-consuming. During the one 

quarter ahead prediction, where cross-validation only needs to be performed for hyperparameter tuning 
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in the inner loop, estimation time dropped to 3.5 hours for the bagging algorithm and to approximately 

30 minutes for the boosting algorithm. The spatial linear models required less than 30 minutes each 

and the least squares estimator less than a second. Estimation time was significantly lower for the 

alternative model specification B for all models.  
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Figures 
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Fig. 1  a Random Partitioning of Folds. b Spatial Partitioning of Folds. Notes: This figure depicts the conceptual difference 
between random partitioning and spatial partitioning of folds using k-means clustering during cross-validation. 
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Fig. 2  a Spatial Distribution of Apartment Rents. b Mean Apartment Rents on ZIP-Code Level. 
Notes: The upper map depicts the absolute monthly asking rent in Euro per month of each 

individual observation in our sample of 9,256 listings between January 2019 and March 2020 in 

Frankfurt. The bottom map shows the respective mean asking rents in Euro per month aggregated 
on a ZIP-code level. 
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Fig. 3  a Semi-variogram of the log rent. b Distribution of Neighbors within the Spatial Autocorrelation Range. Notes: 

The empirical Matérn semi-variogram model suggest a spatial autocorrelation range of 0.58 kilometers, which is the 
distance up to which spatial autocorrelation persists in the data. The histogram presents the distribution of neighbors within 

the spatial autocorrelation range. 
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Fig. 4  a Distribution of the Absolute Percentage Error for Models including Spatial Controls. b Distribution of the Absolute 

Percentage Error for Models excluding Spatial Controls. Notes: The density plots present the expected distribution of the absolute 

percentage error resulting from the respective resampling strategies in comparison to the true out-of-sample distribution of the 
absolute percentage error from the holdout sample. The line type represents the resampling strategy used in the inner loop for model 

selection (non-parametric models only) and the line color represents the resampling strategy applied in the outer loop for model 

assessment. The true out-of-sample distribution is represented in black. The shaded areas depict the interquartile range, which is the 
area between the first quartile and the third quartile of the true absolute percentage error with the middle line representing the 

median.  
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Tables 

 

Table 1  Summary Statistics 

Variable N Mean Median SD Min Max 

Continuous        
Rent per month [Euro] 9256 1088.77 940.00 647.97 190.00 10000.00 

Living Area [sqm] 9256 75.20 70.00 35.07 10.00 440.00 

Age [years] 9256 44.59 46.00 39.34 -2.00 118.00 

Entry date [years] 9256 0.65 0.67 0.35 0.08 1.25 

Latitude 9256 50.12 50.12 0.02 50.08 50.21 

Longitude 9256 8.66 8.66 0.05 8.49 8.78 

Discrete       
Rooms 9256 2.55 2.50 1.00 1.00 8.50 

Floor 9256 2.54 2.00 2.82 -0.50 39.00 

Dummies (1=yes, 0=no)       
Bathtub 9256 0.53 1.00 0.50 0.00 1.00 

Refurbished 9256 0.22 0.00 0.41 0.00 1.00 

Built-in kitchen 9256 0.71 1.00 0.45 0.00 1.00 

Balcony 9256 0.65 1.00 0.48 0.00 1.00 

Parking 9256 0.48 0.00 0.50 0.00 1.00 

Elevator 9256 0.50 1.00 0.50 0.00 1.00 

Terrace 9256 0.13 0.00 0.34 0.00 1.00 

Distances       
NUTS centroid [km] 9256 3.65 3.68 1.87 0.01 10.84 

Bakery [km] 9256 0.39 0.26 0.41 0.00 1.61 

Bar [km] 9256 0.73 0.52 0.64 0.00 2.54 

Biergarten [km] 9256 1.16 0.97 0.77 0.02 3.10 

Café [km] 9256 0.36 0.25 0.33 0.00 1.31 

School [km] 9256 0.31 0.28 0.17 0.02 0.75 

Supermarket [km] 9256 0.26 0.22 0.17 0.00 0.75 

Bus station [km] 9256 3.13 2.77 1.54 0.09 7.56 

Notes: This table reports the univariate distributions of 9,256 asking rents of residential 

apartments listed between January 2019 and March 2020 in Frankfurt (Germany), and their 
observed characteristics after data cleaning. The entry date is represented as a decimal number 

in years, the building age is calculated relative to the year 2018 and is trimmed for buildings 

constructed before the year 1900, distances are calculated as the Euclidean distance to the 
apartment in kilometers, binary variables indicate whether a characteristic is included in the 

apartment (1) or not (0). N: number of observations, SD: standard deviation, Min: minimum 

value, Max: maximum value. 
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Table 2  Listings per Month 

Entry Date N 
Mean Rent 

[Euro] 

Mean Rent 

[Euro/sqm] 

Jan-19 632 1129.57 14.57 

Feb-19 586 1116.31 14.34 

Mar-19 677 1081.28 14.20 

Apr-19 576 1118.35 14.39 

May-19 685 1135.66 14.54 

Jun-19 602 1084.38 14.41 

Jul-19 746 1083.23 14.22 

Aug-19 755 1014.57 14.20 

Sep-19 602 1177.08 14.37 

Oct-19 633 1088.54 14.26 

Nov-19 613 1005.09 13.85 

Dec-19 392 1021.86 14.48 

Jan-20 600 1101.10 14.82 

Feb-20 611 1096.45 14.75 

Mar-20 546 1068.98 14.73 

Notes: This table reports the occurence of apartment listings 

throughout the sample period from January 2019 to March 2020 

on a monthly scale with the respective mean absolute rent in Euro 
per month and the mean rent in Euro per square meter per month. 

N: number of observations. 

  



36 

 

 

Table 3  Optimal Hyperparameters selected by 10-fold Cross-Validation 

 Panel A1: Random Forest including Spatial Controls 

Fold 
b 

(1) 

b 

(2) 

b 

(3) 

b 

(4) 

m 

(1) 

m 

(2) 

m 

(3) 

m 

(4) 

minnode 

(1) 

minnode 

(2) 

minnode 

(3) 

minnode 

(4) 

1 650 500 400 400 9 9 12 14 2 2 8 7 

2 300 350 550 250 9 9 10 10 1 1 5 8 

3 300 500 200 500 9 9 10 10 1 1 6 6 

4 300 600 500 450 7 9 9 10 2 1 2 1 

5 500 450 300 650 7 7 10 10 1 2 6 5 

6 350 500 450 600 9 9 9 12 2 2 7 6 

7 600 300 500 500 9 7 12 9 1 1 1 7 

8 650 650 650 550 7 9 9 10 1 1 3 7 

9 550 650 600 400 9 9 10 9 1 3 4 6 

10 550 500 650 500 9 10 9 10 2 1 2 3 

 
Panel B1: Random Forest excluding Spatial Controls 

1 550 650 200 500 5 6 5 6 2 1 9 10 

2 250 250 450 550 5 5 5 6 1 1 9 8 

3 600 450 500 250 5 5 6 5 2 1 10 8 

4 500 550 200 600 5 5 5 6 2 1 8 10 

5 600 650 500 500 5 5 5 6 1 2 10 8 

6 600 350 450 300 5 5 6 6 2 2 9 9 

7 450 650 350 350 5 6 6 6 1 1 9 9 

8 400 200 450 600 5 5 6 5 1 1 10 9 

9 450 450 600 600 5 5 5 6 1 1 8 10 

10 450 550 500 300 6 6 6 6 2 1 9 9 

 
Panel A2: Extreme Gradient Boosting Trees including Spatial Controls 

Fold nrounds 

(1) 

nrounds 

(2) 

nrounds 

(3) 

nrounds 

(4) 

m/p 

(1) 

m/p 

(2) 

m/p 

(3) 

m/p 

(4) 

η 

(1) 

η 

(2) 

η 

(3) 

η 

(4) 

1 600 550 250 400 72% 58% 65% 45% 0.06 0.07 0.04 0.05 

2 650 600 550 250 38% 78% 65% 58% 0.06 0.1 0.02 0.06 

3 650 550 200 300 58% 85% 52% 85% 0.1 0.07 0.08 0.05 

4 550 600 500 350 78% 78% 58% 85% 0.08 0.08 0.02 0.02 

5 600 600 200 550 72% 72% 78% 45% 0.07 0.08 0.04 0.02 

6 600 600 450 450 65% 45% 45% 45% 0.07 0.09 0.06 0.03 

7 650 550 550 300 72% 78% 45% 65% 0.08 0.09 0.09 0.04 

8 500 650 450 350 52% 52% 78% 38% 0.08 0.09 0.02 0.07 

9 650 650 500 650 58% 65% 78% 52% 0.05 0.06 0.02 0.02 

10 500 550 400 450 78% 45% 72% 65% 0.07 0.08 0.03 0.03 

 
Panel B2: Extreme Gradient Boosting Trees excluding Spatial Controls 

1 500 650 500 600 72% 72% 65% 78% 0.07 0.06 0.01 0.01 

2 500 400 300 200 78% 78% 72% 85% 0.05 0.07 0.02 0.03 

3 650 650 250 550 58% 65% 72% 85% 0.04 0.04 0.02 0.01 

4 650 650 550 250 72% 65% 58% 85% 0.05 0.06 0.01 0.02 

5 650 600 550 600 65% 58% 72% 72% 0.04 0.07 0.01 0.01 

6 550 600 200 500 65% 65% 85% 65% 0.05 0.05 0.03 0.02 

7 400 600 600 550 78% 58% 72% 65% 0.09 0.08 0.01 0.01 

8 450 350 500 500 52% 58% 72% 78% 0.07 0.07 0.01 0.01 

9 450 650 200 300 78% 65% 72% 85% 0.06 0.04 0.03 0.02 

10 450 450 500 600 65% 45% 65% 65% 0.07 0.06 0.01 0.01 

Notes: This table reports the optimal hyperparameters for each fold of the inner loop in the four 

alternatives of the nested resampling procedure: (1) non-spatial tuning + non-spatial validation, (2) non-
spatial tuning + spatial validation, (3) spatial tuning + spatial validation, (4) spatial tuning + non-

spatial validation selected by an automated grid search using 10-fold cross-validation. b: number of 

bootstrap trees, m: number of features in the column subsample, minnode: minimum node size, nrounds: 
number of boosting rounds, m/p: portion of all available features p in the column subsample, η: learning 

rate (eta). 
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Table 4  Error-based Performance Matrix 

 

 
Panel A: Models including Spatial Controls 

Method Resampling Strategy R² MAE MAPE MPE RMSE PE10 IQR COD  

OLS holdout 78.81% 168.24 15.03% -0.61% 292.14 44.45% 205.39 3.52% 

 re-substitution 85.13% 149.79 13.91% 1.64% 251.01 47.21% 199.63 13.73% 

SDM holdout 81.62% 153.56 13.77% -0.91% 272.09 50.54% 182.57 3.25% 

 re-substitution 87.50% 134.81 12.64% 1.40% 230.13 51.81% 177.15 12.52% 

SDEM holdout 79.08% 166.51 14.70% -1.57% 290.29 45.65% 198.80 3.45% 

 re-substitution 87.46% 134.74 12.63% 1.40% 230.53 51.86% 175.95 12.51% 

RFR holdout (non-spatial tuning) 85.13% 143.48 12.79% -0.33% 244.69 52.31% 169.58 3.14% 

 holdout (spatial tuning) 85.14% 143.58 12.81% -0.30% 244.64 52.48% 171.37 3.15% 

 (1) non-spatial/non-spatial 89.42% 116.59 10.93% 1.45% 211.74 59.15% 141.57 11.12% 

 (2) non-spatial/spatial 82.62% 157.30 14.35% 0.67% 271.40 45.83% 208.53 14.69% 

 (3) spatial/spatial 83.07% 157.41 14.39% 0.58% 267.90 45.27% 208.00 14.69% 

 (4) spatial/non-spatial 89.49% 117.93 11.08% 1.42% 211.07 58.65% 144.64 11.26% 

XGB holdout (non-spatial tuning) 85.20% 142.45 12.89% 0.71% 244.15 53.04% 165.43 3.15% 

 holdout (spatial tuning) 85.21% 142.96 12.83% 0.16% 244.06 52.87% 171.23 3.11% 

 (1) non-spatial/non-spatial 90.93% 112.66 10.53% 1.13% 196.08 60.71% 140.46 10.67% 

 (2) non-spatial/spatial 83.90% 157.16 14.25% -0.54% 261.20 44.86% 214.47 14.52% 

 (3) spatial/spatial 84.54% 152.67 13.95% 0.00% 255.98 46.21% 202.73 14.19% 

  (4) spatial/non-spatial 90.15% 117.11 10.97% 1.12% 204.33 58.27% 149.12 11.14% 

  
Panel B: Models excluding Spatial Controls 

OLS holdout 74.52% 188.95 16.80% -0.67% 320.33 38.13% 250.15 3.96% 

 re-substitution 80.58% 173.36 15.99% 2.08% 286.89 40.23% 235.13 15.66% 

SDM holdout 81.56% 154.06 13.82% -0.91% 272.49 49.91% 184.02 3.25% 

 re-substitution 87.38% 135.79 12.72% 1.41% 231.27 51.77% 175.98 12.59% 

SDEM holdout 75.90% 177.71 15.41% -2.07% 311.53 42.17% 218.24 3.67% 

 re-substitution 87.08% 136.36 12.74% 1.42% 233.96 51.74% 175.61 12.60% 

RFR holdout (non-spatial tuning) 80.66% 171.26 15.14% 0.17% 279.07 44.05% 219.94 3.76% 

 holdout (spatial tuning) 80.59% 172.98 15.30% 0.22% 279.60 43.54% 217.75 3.83% 

 (1) non-spatial/non-spatial 85.80% 143.98 13.40% 1.67% 245.33 49.17% 185.16 13.68% 

 (2) non-spatial/spatial 80.51% 173.25 15.85% 2.00% 287.38 40.70% 228.44 16.05% 

 (3) spatial/spatial 80.29% 172.41 15.73% 1.96% 289.02 40.75% 226.66 15.94% 

 (4) spatial/non-spatial 85.60% 146.48 13.62% 1.69% 247.07 48.66% 191.14 13.96% 

XGB holdout (non-spatial tuning) 80.33% 176.27 15.85% 1.65% 281.48 42.69% 223.19 3.83% 

 holdout (spatial tuning) 79.47% 173.97 15.28% -1.17% 287.56 43.26% 225.95 3.79% 

 (1) non-spatial/non-spatial 85.61% 148.24 13.77% 1.63% 246.96 46.97% 194.32 13.96% 

 (2) non-spatial/spatial 81.26% 172.33 15.78% 1.97% 281.83 40.39% 226.85 15.93% 

 (3) spatial/spatial 79.75% 173.80 15.31% -1.18% 292.96 40.78% 229.86 15.77% 

  (4) spatial/non-spatial 84.24% 154.54 14.03% -0.52% 258.41 45.02% 208.12 14.49% 

Notes: This table reports the performance measures for the re-substitution errors in the linear models and the cross-

validation errors in the non-parametric models (1) non-spatial tuning + non-spatial validation, (2) non-spatial tuning + 

spatial validation, (3) spatial tuning + spatial validation, (4) spatial tuning + non-spatial validation in comparison to the 
true predictive performance from the errors of the holdout sample. R²: coefficient of determination, MAE: mean absolute 

error, MAPE: mean absolute percentage error, MPE: mean percentage error, RMSE: root mean squared error, PE10: error 

bucket of estimates within 10% of the true value, IQR: interquartile range, COD: coefficient of dispersion. Absolute values 
are reported in Euro per month. 
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Table 5  Residual Spatial Autocorrelation 

  

Panel A: Models including 
Spatial Controls 

Panel B: Models excluding 
Spatial Controls 

Method Resampling Strategy Morans' I Z-score p-value Morans' I Z-score p-value 

OLS holdout 0.1665 55.4390 0.0000 0.2867 95.3588 0.0000 

 re-substitution 0.2739 19.2969 0.0000 0.3908 27.4825 0.0000 

SDM holdout 0.0304 10.1691 0.0000 0.0306 10.2273 0.0000 

 re-substitution 0.1644 11.6020 0.0000 0.1667 11.7618 0.0000 

SDEM holdout 0.0322 10.7500 0.0000 0.0407 13.5816 0.0000 

 re-substitution 0.2539 17.8911 0.0000 0.3350 23.5895 0.0000 

RFR holdout (non-spatial tuning) 0.1672 11.7543 0.0000 0.3346 23.4502 0.0000 

 holdout (spatial tuning) 0.1664 11.7027 0.0000 0.3224 22.5950 0.0000 

 (1) non-spatial/non-spatial 0.0292 9.7948 0.0000 0.1835 61.2173 0.0000 

 (2) non-spatial/spatial 0.1940 64.7003 0.0000 0.2637 87.7796 0.0000 

 (3) spatial/spatial 0.1884 62.7958 0.0000 0.2640 87.9125 0.0000 

 (4) spatial/non-spatial 0.0297 9.9738 0.0000 0.1893 63.1262 0.0000 

XGB holdout (non-spatial tuning) 0.1352 9.5235 0.0000 0.2642 18.5284 0.0000 

 holdout (spatial tuning) 0.1436 10.1042 0.0000 0.3315 23.2573 0.0000 

 (1) non-spatial/non-spatial -0.0059 -1.9045 0.0568 0.1532 51.0285 0.0000 

 (2) non-spatial/spatial 0.1641 54.6662 0.0000 0.2257 75.0667 0.0000 

 (3) spatial/spatial 0.1609 53.5937 0.0000 0.2769 92.2103 0.0000 

  (4) spatial/non-spatial 0.0075 2.5524 0.0107 0.2136 71.2205 0.0000 

Notes: This table reports the spatial autocorrelation found in the residuals of the models. A positive and 
significant Morans' I signals spatial clustering of similar values whereas a negative and significant Morans' 

I signals alternating values which indicates the presence of spatial outliers and/or spatial heterogeneity. The 
Z-score serves as a standardized value for comparison of the in-sample and out-of-sample statistics. It is 

calculated as the difference between the observed value of I and the expected value of I divided by the 

standard deviation of I, whereby the expected value of I is the theoretical mean defined as -1/(N-1), N being 
the number of observations.  
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Appendix 1  OLS Regression Output 

 Panel A: OLS Model including Spatial Controls 

Variable Estimate Std. Error t-value p-value Significance 

(Intercept) -74.9101 5.9235 -12.6460 0.0000 *** 

Continuous       
Living Area [log] 0.8041 0.0098 81.9760 0.0000 *** 

Age [years] -0.0044 0.0002 -20.1060 0.0000 *** 

Age²  0.0000 0.0000 19.5890 0.0000 *** 

Entry date [years] -0.0160 0.0076 -2.1160 0.0344 * 

Latitude 1.4505 0.1192 12.1730 0.0000 *** 

Longitude 0.6709 0.0574 11.6780 0.0000 *** 

Discrete      
Rooms 0.0410 0.0041 10.0530 0.0000 *** 

Floor 0.0044 0.0008 5.2900 0.0000 *** 

Binary (1=yes, 0=no)      
Bathtub -0.0422 0.0043 -9.7830 0.0000 *** 

Refurbished 0.0160 0.0053 3.0260 0.0025 ** 

Built-in kitchen 0.1094 0.0051 21.6530 0.0000 *** 

Balcony 0.0185 0.0048 3.8400 0.0001 *** 

Parking 0.0275 0.0056 4.8800 0.0000 *** 

Elevator 0.0427 0.0056 7.6360 0.0000 *** 

Terrace 0.0398 0.0067 5.9870 0.0000 *** 

Distances      
NUTS centroid [km] -0.0185 0.0014 -13.0170 0.0000 *** 

Bakery [km] -0.0078 0.0063 -1.2210 0.2222  

Bar [km] -0.0183 0.0049 -3.7300 0.0002 *** 

Biergarten [km] -0.0468 0.0032 -14.7110 0.0000 *** 

Café [km] -0.0175 0.0083 -2.1130 0.0347 * 

School [km] -0.0317 0.0135 -2.3460 0.0190 * 

Supermarket [km] 0.0167 0.0140 1.1960 0.2319  

Bus station [km] -0.0420 0.0024 -17.1620 0.0000 *** 

 
Panel B: OLS model excluding Spatial Controls 

(Intercept) 3.1162 0.0374 83.3150 0.0000 *** 

Continuous       
Living Area (log) 0.8427 0.0110 76.6190 0.0000 *** 

Age -0.0044 0.0002 -18.1640 0.0000 *** 

Age² 0.0000 0.0000 21.4460 0.0000 *** 

Entry date (monthly) -0.0192 0.0085 -2.2480 0.0246 * 

Discrete      
Rooms 0.0290 0.0046 6.3180 0.0000 *** 

Floor 0.0060 0.0009 6.4340 0.0000 *** 

Binary (1=yes, 0=no)      
Bathtub -0.0524 0.0049 -10.7770 0.0000 *** 

Refurbished 0.0270 0.0060 4.5330 0.0000 *** 

Built-in kitchen 0.1488 0.0056 26.5670 0.0000 *** 

Balcony 0.0160 0.0054 2.9390 0.0033 ** 

Parking 0.0096 0.0064 1.5150 0.1299  

Elevator 0.1023 0.0061 16.7760 0.0000 *** 

Terrace 0.0305 0.0075 4.0570 0.0001 *** 

Notes: This table reports the ordinary least squares (OLS) regression outputs for the model 
including spatial controls in panel A and the model excluding spatial controls in panel B. The 

dependent variable is the log(rent), independent variables are listed in the left column 

accordingly. Significance codes: p < 0.001 '***', p < 0.01 '**', p < 0.05 '*', p < 0.1 '.', p > 0.1 ' '. 
Std. Error: standard error. Panel A: F-statistic 2245.00 (p-value: 0.0000), AIC -4450.02, BIC -

4276.96. Panel B: F-statistic 2968.00 (p-value: 0.0000), AIC -2592.44, BIC -2488.61. 

 


