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Abstract

We a) compute a Time Dummy Method index based on a Generalized Additive
Model allowing for smooth effects of the metric covariates on the price utilizing the
pooled data set. We b) construct an Imputation Approach model, where we fit a re-
gression model separately for each year. Our work aims at constructing a global model
that captures relevant interactions of the covariates with time, where time intervals
are selected on a model basis. We therefore c) fit a model-based recursive partitioning
tree to partition the time span and to account for parameter instability. We d) fit a
global model, in which we interact the covariates with the time periods obtained from
the recursive partitioning tree. We analyze the respective performance and choose the
optimal model with respect to out-of-sample prediction accuracy.
We find that parameter instability over time plays a role as the Imputation Approach
outperforms the Time Dummy Model. However by choosing model-based interactions
with time, we are able to reduce both model complexity and out-of-sample prediction
error. We find the interaction between location and time appears to be the most im-
portant.
Our work provides a model-based approach to account for parameter instability over
time in the context of hedonic price models and index construction. We are able
to reduce bias compared with standard Time Dummy Method indices, and receive
less volatile results compared with the typical Imputation Approach. Further, our
assessment no longer naively selects time periods that are interacted with the other
explaining variables. We expect these improvements to be useful especially for smaller,
e. g. regional data sets.

1



1 Introduction

Prices of residential property, according to de Haan and Diewert (2011), play a major role
as both a macroeconomic indicator of economic activity and asset wealth as well as in
monitoring risk exposure and hence financial stability. Thus, it is of great importance to
assess prices of national real estate properties and their development over time.
The main challenge in the computation of house price indices lies in controlling for the
dwellings’ varying characteristics and locations. Following ILO et al. (2004), hedonic in-
dices have become the gold standard for this purpose. Hedonic indices are characterized by
expressing house prices as a function of characteristics within the framework of a regression
model. Thus, the obtained indexes show price evolutions controlled for variation in the
underlying characteristics. Potential problems include an omitted variable bias next to the
usually unknown functional relationship between the house price and its regressors. Thus,
in many applications, it has been shown to be advantageous to utilize more flexible non-
parametric estimation techniques. A common way to incorporate these, is the construction
of Generalized Additive Models and within its framework, the use of splines. Applications
of such methodologies include Waltl (2016) and Brunauer, Lang, and Feilmayr (2013), who
compute hedonic indices utilizing penalized splines within flexible Generalized Additive
Models or Hill and Scholz (2018), who employ a spline surface to capture geospatial ef-
fects.
Within the context of hedonic regression, the Time Dummy Method, next to the Imputa-
tion Approach, are the most relevant approaches. They are both characterized as hedonic
indexes and their differences arise usually from changes in average characteristics. When
utilizing the Time Dummy Method, a model is usually fit to the pooled data set compris-
ing all periods. In this way, it is straightforward to obtain the price index simply as the
(exponential) coefficients of the time dummies. The Imputation Approach is more flexible
as it does not rely on fitting the model to the pooled data. In practice, separate models
are usually fit to each time period, which relaxes the constant parameter assumption over
time, which is a restrictive assumption within the framework of Time Dummy indexes.
This setting represents a typical bias-variance tradeoff: Generally, increased complexity of
a model results in a decreased bias at the cost of inflated variance. Assuming parame-
ter stability over time could be inappropriate, but modeling each time period separately
possibly poses an extreme methodology as well. We propose the application of model-
based recursive partitioning to stratify the data into time partitions in contrast to a naive
stratification strategy within the context of Imputation Approach indices. On the basis
of the obtained model-based partitions, we fit a global model incorporating interaction
terms between the covariates and the time regions obtained from the recursive partitioning
algorithm. This approach enables us to allow for possible parameter stability over time
and to identify (ir)relevant interaction terms using model choice criteria. We are able to
reduce bias, while minimizing variation in the predictions.
We contribute to the discussion of the bias variance tradeoff by analyzing a large sample
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of semi-detached and single family houses in Germany from 2005 to 2019.
Our work is structured as follows. This introduction is followed by a brief presentation of
the concept of hedonic price indices in section 2, where we describe the computation of
Time Dummy and Imputation Approach indices within the context of a brief discussion of
the laid-out concepts. In the following section 3, we briefly describe the methodologies of
Generalized Additive Models and model-based recursive partitioning of which application
our work heavily relies on. Our empirical analysis in section 4 involves, following a descrip-
tion of the involved data, a) the computation of a Time Dummy Method model based on
a Generalized Additive Model allowing for smooth effects of the metric covariates on the
price utilizing the pooled data set. We then b) construct an Imputation Approach model,
where we fit a regression model separately for each time period and c) fit a model-based
recursive partitioning tree to partition the time span into a set of regions. We d) fit a
global model, in which we interact the covariates with the time regions obtained from the
recursive partitioning tree. We analyze the respective performance and choose the optimal
model with respect to out-of-sample prediction accuracy. Finally, e) we construct hedonic
indices on the basis of the employed models and discuss them regarding their differences
and implications. In section 5 we conclude with a discussion of our results.
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2 Hedonic Price Indices

In accordance with de Haan and Diewert (2011), hedonic regression methods serve the
purpose of constructing quality-adjusted price indices. At the basis of this lies the assump-
tion that property prices depend on a set of characteristics, such as location and structure,
which cannot be observed separately. Regression methods are employed in order to assess
the marginal effects and ultimately, to construct indices.
Following Brunauer, Feilmayr, and Wagner (2012), the literature distinguishes two ap-
proaches: The Time Dummy Method and the Imputation Approach. Both techniques
involve regressing the price of a property on its characteristics. The Time Dummy Ap-
proach usually utilizes a pooled regression comprising all time periods, while the Imputation
Method often assesses the characteristics’ marginal effects through a separate regression
for each time period.

2.1 Time Dummy Indices

The Time Dummy Approach is, following Triplett (2004), the most frequently applied
method to construct price indices. The convenience in this approach lies in its simplicity,
as the index is derived directly from the regression coefficients, making its application and
interpretation very straightforward. The subsequent taxonomy is notationally motivated
as laid down in the Handbook on Residential Property Price Indices, commissioned by
the European Union, the International Labor Association, the International Monetary
Fund, the Organisation for Economic Co-operation and Development, the United Nations
Economic Commission for Europe, and The World Bank, authored by de Haan and Diewert
(2011). The standard Time Dummy Variable model is formulated in a semi-logarithmic
form

ln pit = β0 +
T∑
t=1

δtDit +
K∑
k=1

βkzikt + εit, (1)

where pit is the price of property i in period t as a function of K characteristics captured
by zikt. Thereby, β0 and βk give the intercept term and the characteristics’ parameters
estimated by the model, respectively. Dit is the time dummy variable taking the value 1,
if an observation comes from period t and 0 otherwise, where a time dummy for the base
period 0 is left out to prevent an identification problem. Finally, εit is the error-term and is
considered to be white noise. The given model is estimated on the pooled data comprising
all time periods. Hence, the time dummies provide a measure for the marginal effect of
time on the logarithm of price. The price index P TD0t from period 0 to period 1 is usually
derived by

P TD0t = exp(δ̂t), (2)

i. e. is simply given by the respective exponential of the estimated time dummy coefficients.
However, since equation (2) represents a nonlinear transformation, the obtained price index
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is biased. Under the assumption of normally distributed errors, Kennedy (1981) proposes
the unbiased estimator

P TD∗0t = exp

(
δ̂t +

1

2
ˆV ar(δ̂t)

)
. (3)

Although some authors note that the actual bias is small, like de Haan (2010) or Yu and
Prud’homme (2010), we include the bias correction, since it is not computationally costly.

2.2 Imputation Approach Indices

Imputation Approach Indices are, next to the Time Dummy Method, a prominent method
to compute hedonic indices. As formulated by de Haan and Diewert (2011), the approach
is easily motivated by regarding it from an index construction view: Prices of dwellings sold
in period t can only be observed at time t, but are unknown in all other periods. In order
to obtain standard price indices, these unobserved prices need to be imputed. Thus, price
predictions for housings are obtained, whose characteristics are held fixed, while the time
period is varied. In many applications, although not necessarily, this involves a hedonic
regression model that is run separately for each period, see Hill and Melser (2008). In this,
according to Hill (2011), lies criticism of the method, as the exploitation of interactions
between the regression equations is prevented. Further, model complexity increases and
other potential important interactions, regarding e. g. with location, are neglected.
Within the methodology of Imputation type indexes, single imputation and double im-
putation indices are distinguished. The single imputation index imputes solely missing
observations, while the computation of the double imputation indices involves imputing
both missing and observed prices. Hill (2011) argues that imputing both actual and un-
observed prices decreases a potential omitted variable bias. Thus, henceforth, only double
imputation indices are considered. To finally obtain a price index, classic price index for-
mulae are applied. There exists a broad range of formulae in literature, which include e.
g. Laspeyres, Paasche, Törnqvist, or Fisher type indexes. The most commonly applied
are Laspeyres and Paasche indices, although these two approaches have some disadvan-
tages compared to e. g. the Törnqvist index. However, since this work is not aimed at
contributing to the discussion of index formulae, we restrict ourselves to the application
of the Laspeyres index. For a detailed discussion of the mentioned index alternatives,
see for example Balk (1995), Diewert (2007), Hill and Melser (2008), or de Haan (2010).
Again, the taxonomy is (mostly) in analogy to de Haan and Diewert (2011). Verbally,
for the computation of the double imputation Laspeyres index, the following steps are
undertaken:

1. A model is fit separately to each time period, e.g. every quarter for a quarterly price
index and every year for a yearly index, respectively.

2. To receive the Laspeyres type index, the base period characteristics are plugged into
each model to obtain predictions for each period. Hence, base model characteristics
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are evaluated at time t.

3. Finally, the sum of the predictions is obtained in each period and divided by the sum
of predicted prices in the base period. Thus, the price evolution over time is tracked.

In terms of notation, the described methodology translates into the regression model

ln pit = β0t +

K∑
k=1

βktzikt + εit, (4)

which differs from equation (1) with respect to a) the missing time dummy term, and b)
the subscript t for the estimated coefficients, i. e. shadow prices for characteristics zikt.
The subscript is added, since there is a model for each time period.
Finally, predicted property prices for period 0 and t are ln p̂i0 = β̂00 +

∑K
k=1 β̂k0zik0

and ln p̂it = β̂0t +
∑K

k=1 β̂ktzikt, respectively. It is apparent that predicted prices and
therefore indexes vary with differing values of zk. To address this issue, the sample average
characteristics of the base period, z̄k0, as well as the sample average characteristics of the
comparison period, z̄kt, are utilized to compute the indices. the hedonic double imputation
(DI) Laspeyres index is then defined as

PHDIL0t =
β̂0t +

∑K
k=1 β̂ktz̄k0

β̂00 +
∑K

k=1 β̂k0z̄k0
, (5)

where base period prices are imputed for properties corresponding to the period t sample,
evaluated at base period 0 characteristics. Exponentiation to convert prices back onto a
linear scale, the expression from equation (5) becomes

PHDIL0t∗ =
exp(β̂0t +

∑K
k=1 β̂ktz̄k0)

exp(β̂00 +
∑K

k=1 β̂k0z̄k0)
. (6)

However, as shown by Jensen et al. (1906), this estimate is biased as ϕ(E [X]) ≤ E [ϕ(X)].
Analogous to the bias correction in equation 3, we thus need to correct the estimated prices
for bias, when transforming them to a linear scale. Suppose the general case of computing
a fitted value for an object with explanatory variables x0, the naive approach to convert a
predictor ln y0 = x′0b would be

ŷ0 = exp(x′0b).

Then, the bias corrected estimator is, as outlined by Greene (2018), given by

ŷ0 = exp(x′0b+ s2/2) > exp(x′0b), (7)

where s2 is the sample variance. Finally, the double Imputation hedonic price index is
obtained by combining equations (6) and (7), so that

PHDIL0t∗ =
exp(β̂0t +

∑K
k=1 β̂ktz̄k0 + s2t /2)

exp(β̂00 +
∑K

k=1 β̂k0z̄k0 + s20/2)
.
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As pointed out by Hill (2013), the issue of biased transformation from log to linear scale of-
ten is completely disregarded or neglected as the resulting bias is usually very small. In this
application, we compute the bias-corrected version, since it is not computationally costly.
One great advantage of the Imputation Approach towards the Time Dummy Method is
that it implicitly relaxes the assumption of constant characteristics’ parameters. Thus, if
the assumption is violated, this method still yields unbiased estimates. However, as stated
before, this advantage is payed for with increased model complexity and it is questionable
whether all covariates are instable over time, which is implicitly assumed.
Further, since the method employs regressions for all time periods separately, the charac-
teristics coefficients, and hence the index numbers, do not vary when additional samples
are added for future periods. Within the classic framework of Time Dummy Models, the
adding of time periods automatically leads to an update of the whole index, which is prob-
lematic. However, this problem can be avoided by employing e. g. rolling Time Dummy
indices.
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3 Model Methodology

Following de Haan and Diewert (2011), the construction of any house price index is gener-
ally based on matching the prices for identical dwellings over time. However, this matching
is problematic for several reasons. First, all housings are different in nature, i. e. their
characteristics largely differ both in quality and location. Second, even if the same dwelling
is sold in differing time periods, an exact comparison leads to biased indices as stated by
Diewert (2009). Issues arise, because regarded buildings depreciate over time or when prop-
erties have been subject to substantial changes in form of additions, repairs or remodeling.
Hedonic indices address these issues, as they are constructed on the basis of regression
models that explain the observed prices as a function of the dwellings’ characteristics.
Hence, an appropriate index relies on a model that captures the relationship between the
price and its regressors accurately.
In this section, I shortly present the employed model methodology. I begin by outlining the
Generalized Additive Model (GAM) and the concept of nonparametric regression approach
within its framework. The provided illustrations of the various methodologies primarily
follow those by Fahrmeir et al. (2013). The remainder of the section briefly outlines the
concept of model-based recursive partitioning.

3.1 Generalized Additive Models

Estimating the prices utilizing penalized spline regression within a Generalized Additive
Model framework comes along with several advantages over more classic approaches. Linear
regression seeks to capture the relationship between the target variable and the explana-
tory variables. It is often unclear, however, what the functional relationship between the
dependent variable and a specific regressor is. While classic linear models allow a nonlinear
functional relationship through a transformation of the covariates or inclusion of polyno-
mials, the nature of the exact functional dependence often remains unclear, however. Over
the years, nonparametric regression methods have become increasingly popular. The goal
of nonparametric methods is to obtain a smooth function to capture the relationship be-
tween the dependent variable and its regressor.
Hastie and Tibshirani (1987) introduced the framework of Generalized Additive Models
(GAM), which was later implemented in R by Wood (2001) and Wood (2007). Following
Fahrmeir et al. (2013), the GAM can be regarded as an extension of the multiple linear
regression model with

yi = f1(zi1) + · · ·+ fq(ziq) + β0 + β1xi1 + · · ·+ βkxik + εi, (8)

where the dependent variable yi is regressed on an intercept β0, and a set of regressors
xi1, . . . , xik. This classic linear model is then extended by the f1(zi1), . . . , fq(ziq) terms,
which are nonlinear and smooth effects of the regressors. Thereby, it must hold that
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∑n
i=1 f1(zi1) = · · · =

∑n
i=1 fq(ziq) = 0 to avoid an identification problem.

3.1.1 Basis splines

The idea of splines is to divide the range of regressors into several equidistant segments.
The points dividing these segments are subsequently referred to as knots. For polynomial
splines, a separate polynomial is fitted for each of the intervals. These in turn are restricted
to be continuous and differentiable at the knots.
The application of polynomial splines in nonparametric regression requires a constructive
representation of polynomial splines. Following Wood (2017), this means that the function
f needs to be represented in a way so that it becomes a linear model. One possible way to
achieve this representation is to choose basis functions. Among these, we restrict ourself
to the use of basis splines, as they offer several advantages from a numerical viewpoint.
Again, the derivation of the motivation and method closely follows Fahrmeir et al. (2013).
Basic references include Dierckx (1995) and de Boor (1978). The starting point is the
construction of piecewise polynomials. Now, basis functions are constructed in such manner
that the transitions are sufficiently smooth at the knots. A B-Spline then consists of (l+1)
polynomial fractures, where l is the degree of the respective spline. The fractures are put
together in a way so that they are (l − 1)-times continuously differentiable. Through a
linear combination of d = m+ l− 1 basis functions with m knots, a representation of f(z)
is obtained. Hence, one obtains

f(z) =

d∑
j=1

γjBj(z), (9)

where Bj are the basis functions and γj its corresponding coefficients. The derivation of
basis function has been done by Wahba (1990) and Gu (2013), so that for B-splines of
degree l ¿ 1, the basis functions are defined as

Bl
j(z) =

z − κj
κj+1 − κj

Bl−1
j (z) +

κj+l+1 − z
κj+l+1 − κj+1

B0
j+1(z), (10)

where κ1, . . . , κm are the inner m knots. As equation (10) has a recursive structure, an
extended knot range of length 2l, κ1−l, κκ1−l+1

, . . . , κm+l−1, κm+l, is required. A notation
for splines of degree l <= 1 is omitted here, since we don’t apply it. See e. g. Fahrmeir
et al. (2013) for a more detailed overview.
Finally, in order to obtain and estimate a model that is linear in its parameters, equation
(9) is substituted into equation (8)and written in matrix notation such that

y = Zγ + ε,
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where y is the vector of obser vations (y1, . . . , yn)′, γ is a vector containing the basis
functions’ coefficients (γ1, . . . , γd)

′ and Z is the n × d design matrix, which is defined for
the basis splines as

Z =

B
l
1(z1) · · · Bl

d(z1)
...

...
Bl

1(zn) · · · Bl
d(zn)

 .

Then the least squares estimator is

γ̂ =
(
Z>Z

)−1
Z>y.

The interpretation of the resulting coefficients is however not meaningful. Diagnostic plots
from the predictions are more insightful.

3.1.2 Penalized splines

Given the implementation into statistical software, such as the mgcv-package in R, B-splines
are relatively easy to construct and compute. In most applications, the main challenge lies
in choosing the quantity of (equidistant) knots and find a good compromise between a good
fit to the data and increasing model complexity and thus overfitting. A different approach
is to use a fixed, and relatively large, number of equidistant knots (usually circa 20-40) and
introduce a term into the least squares condition that penalizes complexity in the model.
The first implementations of such penalties were introduced by Silverman (1985) or O’Sullivan
(1986). The latter introduced the penalty term

λ

∫
(f ′′(z))2,

where the smoothing parameter λ drives the penalty’s influence. Hence, higher curvature
in f(z) implies a higher penalty term and a smoother is favored over a wiggly fit.
Eilers and Marx (1996) translate the problem into a penalized least squares criterion

PLS(λ) =

n∑
i=1

yi − d∑
j=1

γjBj(zi)

2

+ λ

d∑
j=k+1

(
∆kγj

)2
, (11)

which puts a difference penalty on the coefficients rather than the integral over the second
derivative of the fitted curve. ∆k are the differences of k-th order and are defined recursively
as

∆1γj = γj − γj−1
∆2γj = ∆1∆1γj = ∆1γj∆

1γj−1 = γj − 2γj−1 + γj−2
...

∆kγj = ∆k−1γj −∆k−1γj−1.
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In matrix notation, equation (11) can be written as

PLS(λ) = (y −Zγ)′(y −Zγ) + λγ ′Kkγ,

where Kk is the penatly matrix for the k-th difference of ∆k.
Finally, as written by Fahrmeir et al. (2013), the penalized least squares estimator is

defined as
γ̂ = (Z ′Z + λK)−1Z ′y.

The only term that differs from the B-spline least squares estimator is λK, which is in
turn mainly driven by the smoothing parameter λ. If λ = 0, then the penalized estimator
becomes the standard least squares estimator. As λ grows very large, the obtained fit
becomes equivalent to a linear fit. Eilers and Marx (1996) propose the use of the Akaike
information criterion (AIC) as introduced by Sakamoto, Ishiguro, and Kitagawa (1986) or
the generalized cross-validation method (GCV). The latter is implemented in the context
of penalized splines estimation in the mgcv-package in R by Wood (2007).

3.2 Model-Based Recursive Partitioning

Like generalized additive models, model-based recursive partitioning are considered tech-
niques of supervised statistical learning. In this section, we briefly explain the utilized
model-based recursive partitioning within the class of tree-based methods, and more specif-
ically, regression trees. Our outline and notation follows the work by Hastie, Tibshirani,
and Friedman (2009).

3.2.1 Regression Trees

Regression trees refer to tree-based models that are fit for a metric target variable. They
pose a relatively simple, but mighty tool. In their basic form, they partition the charac-
teristic space into rectangles and simply fit an average in each space. The main concept of
regression trees is to identify split points within the covariates, at which the characteristic
space is split into two regions. For each of the obtained regions, the average is computed.
This procedure is repeated until there some minimum threshold of observations is reached
in a node, or some other stopping criterion is met. The final graphical representation re-
sembles a tree, which is where the name stems from.
In order to shortly illustrate the approach, a dependent variable Y is considered along
with p explanatory variables for n observations. The algorithm is designed, so that it
identifies splitting variables and split points. We then create a partition with M regions
R1, R2, . . . , Rm and model the response as constant cm in each region, so that

f(x) =

M∑
m=1

cmI(x ∈ Rm).
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If we then set the minimization of the sum of squares
∑

(yi−f(xi))
2, we obtain the optimal

ĉm as
ĉm = ave(yi | xi ∈ Rm),

which is simply the average yi in Rm. Since the computation of an optimal partition
regarding the sum of squares numerically is usually infeasible, a greedy algorithm is utilized:
First, define a splitting variable j for which the characteristic space is split at point s, so
that

R1(j, s) = {X | Xj ≤ s} and R2(j, s) = {X | Xj > s}
are obtained. Finally, the splitting variable j and split point s are received by solving

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2
 ,

where
ĉ1 = ave(yi | xi ∈ R1(j, s)) and ĉ2 = ave(yi | xi ∈ R2(j, s))

solve the inner minimization. In this way, the optimal pair (j, s) is obtained and the
procedure is repeated typically until some minimum terminal node size is reached. In the
subsequent, the tree may be pruned to avoid overfitting.

3.2.2 Model-Based Recursive Partitioning

The methodology of model-based recursive partitioning was introduced by Zeileis, Hothorn,
and Hornik (2008), whose notation we adapt to shortly outline the method in the following.
Model-based recursive partitioning represents an integration of parametric models into
regression trees. Within this methodology, a tree is computed, in which every leaf is not
associated with a simple average, but instead with a fitted model, e. g. a linear regression:
Suppose a global parametric model M(Y, θ) is given with observations Y and parameter
vector θ. The model is then estimated by minimization of some objective function Ψ(Y, θ)
resulting into

θ̂ = argmin
θ∈Θ

n∑
i=1

Ψ(Yi, θ), (12)

where θ̂ is the parameter estimate given n observations Yi(i = 1, . . . , n). For OLS, Ψ is
simply the error sum of squares. Then, instead of a global modelM, the characteristic space
is divided into regions, or partitions, R1, R2, . . . , Rm. Thus, each cell Rm holds a model
Mm(Y, θm) corresponding to a cell-specific parameter θm yielding a globally segmented
model MM (Y, {θm}). {θm}m=1,...,M thereby corresponds to the full combined parameter.
Equation (12) formulated over all regions can then be written as the optimization problem

M∑
m=1

∑
i∈Im

Ψ(Yi, θm)→ min, (13)
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over all partitions {Rm} with the indexes Im,m = 1, . . . ,M . Equation (13) corresponds to
a single model corresponding to each terminal node in a tree. To decide whether a possible
split is necessary, a fluctuation test is utilized. The fitting of a model-based recursive
partitioning model can then be summarized in the following algorithm:

1. In a possible node, fit the model with θ̂ to all corresponding observations by mini-
mizing the objective function Ψ , in our case, least squares.

2. Utilizing a fluctuation test, evaluate whether the parameter estimates are stable
with respect to every ordering in the partitioning variables j. If there is significant
parameter instability, choose the variable j which corresponds to the highest degree
of instability. If there is no significant instability in the parameters, stop.

3. Calculate the split point s that locally minimizes Ψ .

4. Split the current node into a set of daughter nodes and repeat the previous steps.

For a more detailed description of the steps, see Zeileis, Hothorn, and Hornik (2008). The
algorithm as outlaid above relies on pre-pruning based on significant parameter instability
in each node. To increase power and prediction accuracy, the authors propose some form
of post-pruning. We employ the party-package by Hothorn, Hornik, and Zeileis (2006),
which includes the lmtree() function. The function includes a prune option that we use
for post-pruning using the BIC model selection criterion.

13



4 Empirical Analysis

In this section, we shortly introduce the utilized dataset and the models which we fit.
Subsequently, we present the results as well as the obtained hedonic price indices.

4.1 Data

The data we utilize for our analysis is provided by the German ’F+B Forschung und Be-
ratung für Wohnen, Immobilien und Umwelt GmbH’ and comprises 682,435 observations
of offer prices for private single family as well as semi-detached houses in Germany. The
data set covers a time horizon from the first quarter in 2005 (2005 Q1) to the first quarter
in 2019 (2019 Q1). Offer prices generally come with some advantages as well as disadvan-
tages. The major advantage of offer prices lies in a higher number of observations. This,
of course, comes along with smaller standard errors in the predicted prices and greater
variation in the explaining variables, which in turn yields less variant house price indices.
The major disadvantage is an upward bias of the offer prices. As the last offer price is
usually greater than, but never beneath the actual selling price, offer prices are on average
higher than selling prices. In our work, we disregard this upward bias of the prices, as a
bias correction can easily be done even after the computation of indices. In our application
it is hence irrelevant. In Table 2, a list of the variables included in our analysis is provided.
In order to assess the locational distribution of the investigated houses, a heatmap of the
observations in three-digit postcode areas is presented in Figure 1a. Red areas indicate
higher counts of houses, while blue areas refer to little observations in the regarded area.
More data is accumulated in the central north, far west, and in the Berlin area. Especially
in the rural east of Germany and in rural Bavarian areas, the density of observations is
lower.
Figure 1b gives a histogram of the observation density over time. Most observations are ac-
cumulated between 2008 and 2013. Especially in 2018 and 2019 there are less observations,
but given the high absolute count, the data is still sufficient to construct local models.
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(a) Heatmap of observations in three-digit
postcode areas.

(b) Histogram of observation density over
time.

Some summary statistics are provided in Table 3. We removed extreme outliers to
avoid distorted results. The utilized data does not contain unavailable data points. This
is vital to ensure comparability between the employed models.

4.2 Models

Our analysis comprises the computation and comparison of the following models. The
terms in brackets refer to the corresponding abbreviations.

(TD) A model comprising data pooled over all time periods corresponding to a typical
Time Dummy Method approach. The model equation results from equation (1),
supplemented with a term to account for the semiparametric part of the model:

ln pi =

Q∑
q=1

fq(ziq) + β0 +
K∑
k=1

βkxik +
T∑
τ=1

δτDiτ + εi. (14)

Thus, the log-price is regressed on a set of characteristics. The continuous variables
area, age, and plot area enter the formula in the first term on the right-hand side of the
regression. The respective effects are modeled in a smooth, nonlinear way utilizing
penalized regression splines as introduced in Section 3.1. β0 gives the intercept,
xik is the matrix of dwelling i’s characteristic k, while βk is the shadow price of
the corresponding characteristic. A complete list of the covariates included in the
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regarded models is provided in Table 2. Diτ is the time dummy variable, whose
value is 1, if dwelling i comes from period τ (and 0 otherwise). δτ is the vector of
the respective shadow prices. The error term is finally given by εi. In analogy with
Brunauer, Feilmayr, and Wagner (2012), spatial heterogeneity is captured utilizing
random effects over 3-digit postcode dummies. Hence, among other advantages, it is
possible to obtain predictions even for observations, whose postcode is not included
in the training data.

(yImp) Secondly, a model is built stratified into years is built. This setting represents a
typical application of yearly Imputation Approach index.

ln pit =

Q∑
q=1

fqt(ziqt) + β0t +

K∑
k=1

βktzikt + εit, (15)

which is fit separately for each year. Hence, inclusion of a Time Dummy is obsolete.
The model formula thus corresponds to the equation (4) plus a term added to again
account for the smooth modeling of the metric covariates.

(qImp) The data is stratified and modeled separately for each quarter, instead of each year
as in (yImp). The model equation is analogous to equation (15).

(S1) For model (S1), in the first step, we fit a model-based recursive partitioning tree. We
partition a linear model, where the logged price per square meter is modeled through
all variables given in Table 2. The metric variables area, plot area, and age enter
the model as a cubic polynomial. We choose quarter as the partitioning variable. In
the second step, we next fit a global model again and interact each covariate with the
time periods obtained from the partitioning in the first step. This makes it possible
to evaluate the necessity of included interaction terms and to utilize standard model
selection criteria.

(S2) Analogous to (S1), but we leave out the interaction term between the time partitions
and area.

(S3) Analogous to (S1), but we leave out the interaction term between the time partitions
and plotarea.

(S4) Analogous to (S1), but we leave out the interaction term between the time partitions
and age.

(S5) To assess the importance of time-location interaction, we again fit a global model
analogously to (S1), but leave out the interaction between the postcode dummies
and the time regions.

(S6) Finally, a global model is fit accordingly to (S1), but interaction terms with the
included metric variables area, plot area, and age are left out.
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4.3 Results

In order to evaluate the tradeoff between variance and bias, we first randomly assign the
data into a training data set (comprising 682,435 observations) and a validation data set
(comprising 75,870 observations). The training data set is employed to compute the models,
the training data set is used to compute predictions, which in turn are compared with the
observed prices. Predictions and actual prices are compared on a linear scale rather than
on a log scale to assure better comparability. As applied in the prior sections, we correct
the predictions for bias when back-transforming them into linear scale.
In our application, we use the root mean squared error (RMSE) for evaluating the models.
Following Greene (2018), the RMSE can be written as√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (16)

where yi are the observed prices and ŷi are the corresponding predicted prices. In our
case, since we aim at comparing the price pi with its estimated counterpart p̂i, and under
consideration of correction for bias, equation (16) becomes

RMSE =

√√√√ 1

n

N∑
i=1

(exp (p̂i + s2/2)− exp(pi))2.

Table 1 reports the out-of-sample prediction error of the evaluated models. The worst
model with regard to the out-of-sample prediction accuracy is the Time Dummy (TD)
model. Model (TD) is outperformed by both yearly (yImp) and quarterly (qImp) Imputa-
tion Approach models with respect to RMSE. Thereby, (yImp) clearly outperforms (qImp).
This indicates a potential overfit of the (qImp) model with regard to model complexity.
The out-of-sample prediction comparison indicates that the assumption of parameter sta-
bility in the context of the Time Dummy approach is too restrictive. However, the yearly
Imputation Approach model (yImp) is not the globally best model.
The model-based recursive partitioning yields separate time partitions over the regarded
data, which we then interact with the other covariates in (S1), (S2), (S3), (S4), (S5), and
(S6). These are

1. 2005 Q1 - 2008 Q2,

2. 2008 Q3 - 2010 Q1,

3. 2010 Q2 - 2011 Q3,

4. 2011 Q4 - 2013 Q3,

5. 2013 Q4 - 2015 Q2,
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6. 2015 Q3 - 2016 Q4, and

7. 2017 Q1 - 2019 Q1.

Thus, we obtain only seven time periods, for which models are fit in contrast to 15 separate
models for (yImp), and 57 separate models for (qImp), respectively. Further, our seven
time periods are chosen on a model basis, as opposed to classic Imputation approach,
where periods are naively chosen. Models (S1), (S2), (S3) next to (S4) have lower values
in RMSE. This implicates that tight stratification also results in decreasing out-of-sample
prediction precision and thus poses an overfitting to the data. Interactions play a role, but
not all interactions are equally important. Through our approach, we are able to reduce
bias and variance while minimizing model complexity. One further advantage of our model
design is that it allows to switch interactions with time on or off at will and we are thus
able to draw conclusions about which interactions play a role and hence, which covariate
are (in)stable over time. (S2) is the globally best performing model implicating that an
interaction between area and the time regions does not play a role. (S2), (S3), and (S4)
further all outperform the Imputation indices, which indicates that the metric covariates are
not substantially interacted with time. Even if we exclude all metric covariate interaction
terms with the partitions as for (S6), our predictive accuracy is not substantially higher.
The most important interaction, with regard to variation in the obtained RMSEs, is that
with location. Model (S5) has a substantially higher RMSE than both (yImp) and (S2).
The RMSE is rather much closer to that of the Time Dummy (TD) fit, which represents
the case of no included interactions at all.
We further carried out a stepwise BIC algorithm to choose appropriate interactions between
the discrete covariates with the time regions. However, this procedure does not yield any
further improvements regarding RMSE. Thus, we omit the corresponding results.

(TD) (yImp) (qImp) (S1) (S2) (S3) (S4) (S5) (S6)

RMSE 480.03 459.12 470.23 454.44 454.40 458.88 458.84 472.44 459.52

Table 1: Out-of-sample prediction accuracy of evaluated models in terms of root mean
squared error (RMSE).

To discuss the relevance of each covariate’s interaction with time in depth, we provide
marginal effect plots for model (S1), where we include all interaction terms, in Figures 2
and 3. In the corresponding graphs, we predict prices per square meter by varying the re-
garded variable over the given range while holding the other variables fixed at their mean.
Again, we compute the smearing estimator as shown in equation 7 to obtain unbiased

18



results. Through this approach, we are able to provide prices on a linear scale, which facil-
itates interpretation. Since we interact each of the covariates with the seven time regions
obtained by the model-based recursive partitioning algorithm, we obtain one graph for each
partition. Thus, we get seven curves referring to the corresponding time interval.
The marginal effect of area is depicted in Figure 2a. Generally, the average price square
meter monotonously descends with rising area of the underlying dwelling. The slope of
descent appears to be greater (in absolute value) for smaller values in area than for greater
ones. This can be interpreted as a form of bulk discount, where the price of an additional
price per square meter declines for larger objects. All curves are aligned close to parallel
to each other and differ only in their level. However, a shift in level is irrelevant regarding
a possible interaction between the depicted variables. The Figure supports the conclusion
that interaction with area is irrelevant. Thus, it seems inappropriate that parameter in-
stability is implicitly assumed within (yImp) and (qImp).
Figure 2b provides the marginal effect curves of the age variable. Again, the average price
per square meter declines with increasing values in age, i. e. older buildings are associated
with lower average prices per square meter. Analogous to the previous graph, the lines
mainly differ in their level rather than their functional form.
Finally, the marginal impact of plot area on the price per square meter for each partition
is given in Figure 2c. The average price of housing generally rises with increasing area
and there appears to be a saturation effect for greater values of plot area. The functional
relationship appears to be quite similar over all time regions. However, the curves appear
slightly flatter for later than for earlier years.
The graphs emphasize, why out-out-sample prediction accuracy is only improved slightly,
if at all, when introducing the corresponding interaction terms. For age and plot area,
there could be a relevant interaction with time, but the interaction does not appear to be
large in magnitude.
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Figure 2: Marginal effects for metric covariates area, age, and plot area interacted with
the time periods received from model-based recursive partitioning. The y-axis reports the
price per square meter in Euros.
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Figure 3 provides further insights into the relevance of an interaction between time
and location in the data. It gives the predicted price per square meter for varied 3-digit
postcode dummies over the obtained partitions. The first graph thereby provides the ab-
solute price level in the corresponding regions, while all subsequent graphs merely give the
deviation in predicted price per square meter in the postcode areas. This simplifies the
identification of possible interactions. Further, the chosen form of display gives insights
into which regions in Germany are subject to steeper price appraisals compared to other
parts of the country. Prices are again reported on a linear scale including bias correction.
Generally, regions in former West Germany, especially metropolitan areas like Munich,
Stuttgart, Berlin, or Hamburg, are associated with higher price levels compared to former
East Germany in general, especially rural regions. Some regions in and around Munich
have average prices per square meter much higher than 3000 Euros, while some rural re-
gions in former East Germany feature prices of below 1000 Euros per square meter.
The two subsequent graphs do not indicate a strong location-time interaction. Prices do not
structurally rise or fall between 2008 Q2 and 2011 Q3 on average. For the fourth graph and
the following, however, the relevance of location-time interaction becomes visible. Between
2011 Q4 and 2015 Q2, price changes in Germany are distributed quite heterogeneously. Ar-
eas aroung large cities like (especially) Munich, Hamburg, Nuremberg, but also Dresden,
face steep price increases of close to and beyond 500 Euros per square meter, while other
urban regions are even associated with price drops. For the period 2017 Q1 and following,
there is an overall upward shift in the price level. Blue zones almost completely disappear
and the map is dominated by (deep) red areas. However, price increases in urban areas
are on average higher than for rural regions.
Overall, Figure 3 emphasizes the importance of the time-location interaction in the data.
An interaction is visible underlining the results of the out-of-sample prediction accuracy
comparison.
For completeness, we provide Figures 6, 7, 8, and 9, where the evolution of the coefficients
over time is depicted. We track the respective development by plotting the main effect’s
coefficient in the base perios, plus the respective interaction term coefficient in the subse-
quent periods together with the corresponding confidence intervals.
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Figure 3: Marginal Effect of postcode dummies over time periods. The first graph refers
to the absolute level of price per square meter in Euros. Subsequent graphs show the
deviation from the first figure. Blue colored polygons refer to zones subject to price drops,
red zones refer to increases in the predicted price per square meter.
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4.4 Resulting indices

Figure 4 shows the obtained hedonic indices from the utilized models (TD), (qImp), (yImp)
and the global best model (S2). The latter is computed by an adapted Imputation Ap-
proach: We take the base periods observations and vary their values in the quarter variable
over the regarded time span. Thus, we are able to construct a Laspeyres type index. The
curves correspond to the price evolution on a linear scale including bias correction.
Until the second quarter in 2009, the underlying houses are not subject to price increases.
The Time Dummy index (TD) reaches a local minimum of close to 1 at that time. From
circa 2010 until circa mid 2013, the hedonic curves are subject to steep prices raises. From
2010 to 2019, all hedonic indices begin to gradually rise. This overall trend does not ap-
pear to end within the investigated time horizon. The general form and level of all hedonic
indices does not vary from each other until roughly mid 2011.
Although the indexes’ RMSEs are not substantially different in value, we find that these
small variations translate into relatively large differences in the corresponding price indices:
Over the complete time span, the quarterly Imputation Approach (qImp) index indicates
a price increase of just under 50%, while the Imputation index derived from (S1) returns a
price increase of close to 60% over the 15 regarded years. All hedonic indexes are relatively
close to each other until roughly mid 2011. In the subsequent periods, (TD) model’s index
runs underneath the other investigated indices. The functional form is similar in shape,
but the general level is shifted downwards. Taking into consideration the higher RMSE of
the model compared with e. g. (S1), this implicates that the index resulting from (TD) is
downward biased.
Regarding variation in the investigated hedonic indices, the index obtained from (qImp)
is the most volatile. This finding implicates that regarding the bias variance tradeoff, the
model is too complex, which yields less biased, but highly volatile estimates. The inflated
RMSE of the corresponding model supports this finding. The index of the yearly Im-
putation Approach model (yImp) is less volatile and proceeds parallel to the (S2) index.
However, it provides only a yearly index and hence no information about the underlying
quarters.
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Figure 4: Resulting indices from utilized models. The blue line shows the evolution of the
mean house price. The index produced by the Time Dummy index from (TD) is given by
the purple line. The light green line depicts the quarterly imputation type index referring
to (qImp). The dark green line gives the yearly Imputation index from (yImp). Finally,
the red graph indicates the evolution of the imputation index, resulting from (S1).
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5 Discussion

Hedonic Price Indices play a major role in assessing quality-adjusted price changes of
housing over time. Within its class, the Imputation Approach next to the Time Dummy
Method play a prominent role. A great problem is to capture interactions of the covariates
with time. We construct hedonic indices for a range of various model and compare them
regarding the underlying assumptions, predictive accuracy, and resulting indices.
Based on our analysis, the following main findings emerge. First, pooling the data over
both space and time appears too restrictive and the implicit constant parameter assump-
tion seems to be violated, which is indicated by the lower out-of-sample prediction accuracy
with regard to RMSE. Imputation Approach indices outperform those based on the Time
Dummy Method. We find the hedonic house price index resulting from the pooled model
to be downward biased.
However, typical Imputation approach indices, that naively stratify data into periods, pose
extreme methodologies, too. We show that stratification into too many periods leads to
inflated RMSEs, even utilizing a large data set, like in our case. The resulting indices
are often very volatile (qImp). The quality of the respective index further highly depends
on the underlying data. Regarding more regional data, stratification into even years could
lead to inflated variation in the estimated prices, which in turn translates into volatile price
indexes. Naive stratification further rules out the possibility to exclude possibly irrelevant
interaction terms with time. Evaluating the relevance of the regarded interactions is not
possible either.
We apply model-based recursive partitioning to identify relevant interactions of the co-
variates with time and fit a global model, enabling us to employ standard model selection
criteria to select relevant interaction terms. This approach further enables us to make
statements about the variables for which parameter stability plays a role. We find that the
most important interaction is that between time and location. Excluding the correspond-
ing interaction from our model leads to a relatively big inflation in RMSE, i. e. a decrease
in prediction accuracy. The exclusion of other interaction terms only leads to small losses
in predictive accuracy. For the exclusion of the interaction term with area, we even find
an improvement in RMSE. Since we stratify the data on a model basis, our approach is
more flexible and we expect it to be more suitable compared with the classic approaches
for other data sets. For smaller samples, e. g. regional data, the algorithm would likely
select less time periods and we expect the advantage of model-based recursive partitioning
to be even larger with respect to out-of-sample prediction accuracy.
The investigation of such regional data remains subject of future work. The same holds
for partitioning the model over variables other than time in order to investigate relevant
interactions. Finally, recursive partitioning that directly incorporates smooth effects of the
covariates would be of great use.
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A Description of covariates

Variable name description

plot area plot area of the object in m2

age age of object when sold
plot area plot area of object in m2

PLZ 3st first three digits of postcode

alarm object has alarm system (yes / no)
bright object is bright (yes / no)
fire place object has fireplace (yes / no)
basement object has basement (yes / no)
need of renovation object is in need of renovation (yes / no)

wellness
object has a swimming pool, sauna, or whirlpool (yes
/ no)

gas heating object has gas heating (yes / no)
electric heating object has electric heating (yes / no)
oil heating object has central oil heating (yes / no)
night storage has night storage heating system (yes / no)
parquet object has parquet flooring (yes / no)
calm object is located in calm area (yes / no)
garage object has a garage (yes / no)
gallery object has a gallery (yes / no)
floor heating object has floor heating (yes / no)
balcony object has balcony (yes / no)
elevator object has elevator (yes / no)
yoc1900 object was built before 1900 (yes / no)
villa object is a villa (yes / no)

facilities
degree of quality of object’s facilities (simple /
normal / higher)

quality
degree of object’s quality (less / normal / higher /
luxurious)

type
whether object is single family home or
semi-detached home (versus single family home)

quarter quarter of last offer for object

year quarter of last offer for object

Table 2: List of variables included the analysis.
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Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max

log price 7.351 0.508 4.605 7.114 7.663 8.854
plot area 564.835 339.358 150 306 719 2,000
area 143.341 39.364 80 118 160 300
age 23.869 30.814 −2 0 41 135

Table 3: Summary statistics of continuous variables.

B Interaction of time with discrete variables

Single model with interactions − main effects
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Figure 5: Main effects coefficient values and confidence intervals for (S1). The dots refer
to the point estimate, while the bars give corresponding 95% confidence intervals.
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Figure 6: Interaction of dummies with time (part 1). The dot in the first period corresponds
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Figure 7: Interaction of dummies with time (part 2).
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Figure 8: Interaction of dummies with time (part 3).
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(a) Interaction of dummies with time (part
4).
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(b) Interaction of dummies with time (part
5).

Figure 9: Interactions of variables facilities and quality with the time partitions.
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