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Abstract

This article uses a hedonic modelling approach to assess the implicit willingness to pay for the

visual accessibility of voluntarily protected, privately owned, scenic lands based on single family

houses. These lands are perpetually protected to preserve natural, historic, and scenic

characteristics. The capitalized house premium was captured using a visual accessibility variable,

which was a combined weighted measure of ‘view’ and ‘proximity,’ referred to here as the Gravity

Inspired Visibility Index. Both global (adjusted R2
¼ 0.52, AICc¼ 29,828) and geographically

weighted regression models (adjusted R2
¼ 0.59, AICc¼ 29,729) estimated the price effect but

the geographically weighted regression model outperformed the global model. The results

from the geographically weighted regression model indicated an average 3.4% price premium

on the mean value of homes in the study area. The paper offers a useful framework for

evaluating the effect of land protection for planning and real estate purposes. It also offers

useful insights for conservation agencies, local governments, professional planners, and real

estate professionals for prioritizing land sites with scenic views.
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Introduction

The theoretical foundation of the hedonic price modelling (HPM) technique was laid down
by Lancaster (1966). According to this theory, consumers derive their utility for any good
from a large bundle of its characteristics. For example, housing is a composite good, which
consists of structural characteristics, such as the size and number of bedrooms and
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bathrooms, as well as neighborhood features, such as local sub-market characteristics. These
individual characteristics do not have an explicit market price but are sold as bundles, which
in this case are houses that are valued for their utility bearing characteristics with marginal
prices that represent the specific price of each individual characteristic that a buyer is willing
to pay for. The HPM framework helps to disassociate these individual prices from the total
price, e.g. by capturing urban externalities. It has been used because of its superiority over
other methods, such as survey-based, stated-preference methods or willingness to pay. The
HPM has also proved to be very useful for estimating the value of non-market
environmental amenities, such as value contributing parks, open spaces, and waterfronts
as well as dis-amenities, such as air pollution, noise, and proximity to noxious facilities, and
has been used extensively in housing market studies and real estate valuation (Bjorkund
et al., 2002). In fact, many studies have already shown that there is an economic relationship
between various environmental amenities and house prices (see, e.g. Brander and Koetse,
2011; Mittal and Byahut, 2016; Simons and Saginor, 2006) where there three key variables
have been identified. The first is proximity to an amenity (Crompton, 2006, 2005).
Theoretically, greater demand for scenic locations by amenity-seekers will push up the
price, which will also vary with the type of amenity. Discreet amenities are clearly
recognizable such as ocean fronts, lakefronts, river/streams, parks, golf courses or trails/
greenways. Numerous studies have attempted to quantify the price premiums of discreet
amenities. For example, the premium price effect of waterfronts was found to be the highest
of all amenity types; among different waterfronts, the proximity of oceans with well-
developed beaches accrued the highest premium of over 101.9% (Conroy and Milosch,
2011). Other studies have demonstrated premiums for lakefront homes (Bond et al., 2002;
Lansford and Jones, 1995), proximity to rivers and streams (Mooney and Eisgruber, 2001;
Netusil, 2005), golf courses (Cho et al., 2009; Shultz and Schmitz, 2009; Asabere and
Huffman, 1996), trails and greenways (Lindsey et al., 2004; Nicholls and Crompton, 2005)
and parks (Crompton, 2005; Hammer et al., 1974). Golf course premium in terms of
percentage values of undeveloped lots was found to be 85%, if the lots were facing well
maintained golf course (Wyman et al., 2014).

Non-discreet amenities, on the other hand, include an array of open spaces or green
patches that are available throughout the urban landscape. Mosaics and patches of green
landscapes surrounding homes were used as a proxy of desirable low impact, quieter
surroundings, with desirable views. To capture a measurable variable for such
landscapes, remotely sensed land use characteristics data – the Normalized Difference
Vegetation Index (NDVI) data was used to differentiate effects of different types of
green spaces on home values (Bark et al., 2011; Payton et al., 2008). Houses near such
amenities accrue a relatively lower premium. An array of amenity generating landscape
features have been studied in the past including land cover types in the proximity of a
house (Walls et al., 2015; Kadish and Netusil, 2012), undeveloped lands by development
potentials (Irwin and Bocksteal, 2001), lands by use and ownership (Ham et al., 2015),
urban green spaces (Saphores and Li, 2012), urban tree coverage (Sander et al., 2010), tree
canopy cover (Conway et al., 2010), and vegetation (Kestens et al., 2004). For example,
Conway et al (2010) studied the effect of urban greenspace on house prices and found that
with every 1% increase in greenspace, the median house price increased by 0.07%. Other
studies have shown increases with tree cover canopy (Li and Saphores, 2012) and proximity
to forests (Ham et al., 2015).

The second variable affecting house prices is the view of the amenity (Bourassa et al.,
2005, 2004) where discrete scenic amenities fetch higher premiums than non-discrete ones.
For example, premiums for oceanfront views were found to be the highest among all discrete
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amenities, ranging from 47% (Bin et al., 2008) to 147.2% (Benson et al., 1997). Lakefronts
views (Benson et al., 1998), riverfront homes (Netusil, 2005), views to waterfalls (Yin and
Hastings, 2007) and forested areas (Ham et al., 2015), and views of city or urban skyline
views (Wolverton, 1997), and views of farmlands and preserved open spaces (Geoghegan
et al., 2003) have also been shown to contribute positively to house prices, among other types
of views. When both proximity to amenities and the view of the amenity are considered
together, then the premium value is even higher. For example, when homes were found to
have both proximity to and a view of the ocean, premiums were found to be as high as 147%
(Benson et al., 1997). Similar additive effects were found by Benson et al. (1998) in a study in
Bellingham, Washington, when considering both views and proximity to lake fronts.

Accessibility to locational externalities is the third variable that has been found to affect
house prices (Orford, 2002; Xiao et al., 2016). The concept of accessibility is defined by the
level of opportunities available for spatial interaction between two point pairs. Such
interaction measure is commonly used in transportation studies (Lin et al., 2016) and in
retail market analysis, extensively (Huff and Jenks, 1968). Accessibility is defined as the
weighted sum of the inverse distance between a home and an amenity, which further
depends upon the size or attractiveness of the amenity (Orford, 2002). Orford (2002) used
accessibility to amenities as a weighted index in a study in Cardiff, UK. Similar weighted
indexes have also been employed in Powe et al. (1997) for estimating the price effects of
access to woodlands. The index measured the ratio of woodland forest to the squared
distance from homes in the Southampton and the New Forest regions in Great Britain.
Homes located closer to larger forests experienced a greater influence by the forests in
such a weighted index. Other similar gravity-inspired indices are discussed in Xiao et al.
(2016).

An HPM approach applied to a conservation context is not unique and has been used
extensively in the past to estimate the view, proximity and accessibility to different features
such as golf courses, water fronts, open spaces, farm lands, etc. However, HPM has not been
used in the context of privately owned conservation lands. Billions of dollars’ worth of
public money are put into tax credits to incentivize private landowners in land
conservation in the form of Conservation Easements (CEs), which serve as public
amenities, and offer direct and indirect environmental and health benefits to the local
community. In the past, several parks, trails, waterways, and wildlife areas have been
protected in the USA via this mechanism. CEs are legal agreements signed between
private landowners and non-profit organizations or a government agency, to perpetually
conserve preservation-worthy lands. Through the agreement, private landowners restrict
future development rights and retain their land titles, and their right to own and use the
preserved land. Owners have the option to donate or sell their restricted development rights,
and claim federal tax credits equivalent to the restricted development value (Wright, 1994).
As none of the studies in the literature have used the HPM framework with CEs, the aim of
this paper is to apply this framework to capturing the marginal price effect of preserved lands
using both ordinary least squares (OLS) and geographically weighted regression (GWR).
A second innovation is to link the proximity and view variables together into a single
measurement variable of visual accessibility called visual proximity. Referred to here as a
Gravity Inspired Visibility Index (GIVI), it is used as a distance weighted measure to capture
the visibility of protected lands while a distance decay function incorporates the role of
proximity. This variable assigns higher weights to the quantity and quality of scenic
views, and lower weights with increasing distance from homes. This approach is
demonstrated for CE properties located in Worcester, Massachusetts, as outlined in the
next section. This is followed by a description of the development of the GIVI index and
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the OLS and GWRmodels. The results of the models are then presented including reflections
on the utility of applying these approaches to preserved lands more generally.

Study area and data

This study was conducted in Worcester, which is the second largest city in Massachusetts in
the USA. The externality effect of voluntarily protected lands in Worcester on the prices of
the surrounding 1243 single family detached (SFD) homes is estimated. Two datasets were
used: a cluster of 26 CEj parcels as amenity generators and 1243 SFD Homei as amenity
absorbers.

These CE parcels varied in size from 1 acre to 400 acres and were clustered around 7 or 8
locations. They contained various natural and scenic amenities such as waterfalls, streams,
ponds, large boulders, marshes, wetlands or vernal pools, golf course, trails, parks, woods
and vegetated lands including hardwood forests, mountain laurels, and silver beech trees.
The 1243 Homei included all SFD homes sold between 2005 and 2008 that were located
within 0.5 miles of the CEj clusters. The Homei dataset had a mean price of $174,313 and a
standard deviation of $56,361. Descriptive statistics of these homes is provided in Table 1.
Figure 1 shows the spatial distribution of the Homei in black dots relative to the location of
the CEj parcels shown as grey polygons.

Table 1. Descriptive statistics of home samples (n¼ 1243) within 0.5 mile from CE-protected parcels

(n¼ 26).

Variables

Units and explanation of

variables Min Max Mean SD

Sales_HPI9 Home Sale Price in ($) –

Adjusted to House Price

Index for year 2009

$13,939 $675,000 $174,313 $56,361

LotSqft Lot area (Sqft) 1227 231,198 10186.9 9391.40

TULA Total Utilizable Built Area (Sqft) – – 1401 580.41?

Bath No. of Bathrooms 1 6 1.30 0.54

H_Bath No. of Half Bathrooms 1 2 0.45 0.52

Qual Assessor assigned home quality

index (20 to 60)

10 60 40.14 4.20

Age Age of Home (Year) 0 166 57.8 32.9

Deck Deck Binary (Y/N) 0 1 0.30 0.46

Hous_Dens Housing Density in the

neighborhood-(No. of

Houses/Acre in census block

group)

0.11 13.24 3.10 2.50

MedHsg_Val Median Housing Value ($) of

owner occupied houses in

census block group

71,700 $261,500 $121797.70 25059.20

Perc_Black Percentage of Blacks in census

block group

– 34.84 4.64 5.12

GIVI_2 Gravity Inspired Visibility Index

(B¼ 2)

– 8.89 0.0676 0.480

Valid n¼ 1243 Source: City of Worcester and Assessor’s office and author estimated
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Methodology

Viewshed analysis and the development of the GIVI index

A multi-step GIS methodology was employed to develop the GIVI variable as detailed
below. The Step 1 involves development of 3 D raster. This methodology is presented in
more detail in Mittal (2014).

Step 1: Development of 3D merged raster for the viewshed analysis. The first step in the
methodology involved creating an input raster for viewshed analysis, where similar
approaches have been used in past environmental-benefit studies (Lake et al., 1998, 2000;
Shultz and Schmitz, 2008). The viewshed identifies cells in an input raster that are visible
from one or more observation points. In the absence of high precision LiDAR data for
Worcester, an alternative approach was used as described here. A single raster surface was
created by merging an initial raster created from digital topographic spot elevation data with
a second raster containing the building heights and footprints (Sander and Manson, 2007)
using Spatial Analyst in ArcGIS. The cell size of the merged raster was 100 � 100 and served
as the input to the viewshed analysis outlined in step 2.

Step 2: Development of a Gravity Inspired Visibility Index (GIVI) variable. The
computation of the GIVI variable involved three additional steps after the input raster

Figure 1. Map of Home samples (i) and the CE Parcels (j) in Worcester, MA.
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surface was created. An algorithm was developed to create two different matrices: a visible
area matrix (Vij) and a distance matrix (dij). The rows of these matrices contained the Homei
while the columns contained the CEj parcels. Both matrices had dimensions of 1243� 26
(Figures 2 and 3).

Step A: Development of the Visible Area Matrix. The first objective was to quantify the
visible area of each CEj parcel from each Homei and fill the returned values in the Vij matrix.
The viewshed analysis uses the input raster and returns an output raster showing visible
(with a value of 1) and non-visible areas (with a value of 0) from a set of observer locations.
Viewsheds were run iteratively from each Homei as an observer location, assuming a human
height of 5.5 feet. The final outputs were a set of viewshedij rasters containing the view from
everyHomei. Each output Viewshedij raster was then clipped with the CEj parcel boundaries.
To calculate the visible area of the raster in square feet, the number of visible cells were
multiplied by the 100 � 100 pixel size. Only the values of 1 inside the CEj parcel were
accounted for in the calculation. The visible area in square feet was then transferred to
the Visible Area Matrix Vij for each Homei and CEj, resulting in many cells with values
of 0 in the matrix, which means that a given CEj is not visible from Homei. The dimension of
the visible area matrix is 1243� 26 as shown in Figure 2.

Step B: Development of the Distance Matrix. The shortest distance from eachHomei to the
visible portion of each CEj parcel was calculated, returning values to the distance dij matrix in
linear feet. Each cell value in the distance dij matrix was dependent on the output cell values
of the Visible Area Matrix Vij. Notably, because of this interdependency, if a cell in the
Visible Area Matrix Vij had a value of 0, then the corresponding cell in the distance matrix
also received a value of 0. For the calculation of Vij and GIVIi, all 0 values from the distance
dij matrix were replaced with a value of 1 to avoid computation errors, as dij is in the

Figure 3. Distance matrix dij.

Note: In Figure 3, dij in each cell of the distance matrix is the shortest distance (in linear ft) from each Homei

to the visible portion of each CEj parcel. Cell value in dij has interdependency on the Vij.

Figure 2. Visible Area Matrix Vij.

Note: In Figure 2, Vij in each cell of the visible area matrix is visible areas (in sqft) of CEj parcel as captured via

the viewshed from each Homei.
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denominator of the GIVI, and 0 value would give erroneous results. The result was a
1243� 26 dimensional output matrix containing the shortest distances to the visible area,
as shown in Figure 3.

Step C: Computation of Index values for the GIVI matrix. The cell values generated in the
two steps above were used in computing the weighted summation of the inverse-distance-
squared based on the visible size of the protected properties and their inverse distances from
SFH. The sum of the distance weighted visible area was calculated as follows:

Distanceweighted sumof visible area for each Homei ¼ Vi ¼
X26
j¼1

CEij=d
�
ij ð1Þ

where CEij is the attraction factor of the scenic CEj parcel defined by its total visible area
from Homei. An attraction factor can be any characteristic of the CE such as the size or any
attractive environmental feature. For this research, the visible area of the scenic CE parcel
is used as the attraction factor. This value was taken from the visible area matrix for each
Homei, where i¼ 1243 and j¼ 26; denominator dij 4 0, represented the distance between
Homei and CEj and the value of dij was used from the distance matrix for corresponding
cell values of the visibility matrix. The parameter k is a distance-decay exponent in
estimating the value of GIVIi. Past literature does not offer much guidance on the
appropriate value of the exponent k. As the value of parameter k is specific to
environmental amenities and is not known a priori, we calibrated various models for
three k¼ 1, 1.5 and 2 values as undertaken by Orford (2002). In equation (1), the decay
term k is a power function in the denominator so the greater the k value, the higher the value
of homes that are really close to the CE clusters. A higher value of k would result in reducing
a significant number of home samples in the effect estimation, providing very high weights to
homes near the visible CEj and ignoring all others. Therefore, values of k> 2 were not
attempted and as mentioned above, three parameter values k¼ 1, 1.5 and 2 were applied
in computing the GIVIi. After the initial OLS model calibration, the model with the GIVIi
value for k¼ 2 was chosen for two reasons: (a) the model with k¼ 2 provided the best
performance and (b) to avoid exclusion of homes that are farther from the CE clusters.
The GIVIi variable was then computed using the following formula:

GIVIi ¼ Vi

� X
i

X
j

Vij

 !
ð2Þ

Or,

GIVIi ¼
X26
j¼1

CEijd
��
ij

X1243
i¼1

X26
j¼1

Vij

 !
ð3Þ

The GIVIi captured the distance weighted effect of how visible a protected site CEj is
from Homei in the presence of other competitive CE locations, and how far the visible CE
area is from a given Homei. The GIVIi is a single variable that was used to measure both
proximity and visibility simultaneously and is thus a measure of visual accessibility.
Therefore, with the data samples used in this research, visual accessibility of a Homei to
the CE-protected property parcels CEj is a weighted summation of squared-inverse-distance
based on the visible size of the scenic protected properties and their inverse distances from
a Homei.
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Description of the models

The global OLS model. A hedonic equation in its simplest form is a regression of
expenditures (rents or values) on various characteristics of a sample of homes. Following
Sirmans et al. (2006), only selected variables were used to control for the structural and
neighborhood characteristics of homes. As part of the model building, several OLS-based
global models were first calibrated using a step-wise process. The candidate model that
minimized the Akaike Information Criterion (AIC) was chosen. In the final model, the
control independent variables Xi included seven structural characteristics: size of the lot
(LotSqft); total utilizable built area (TULA); number of full baths (Bath); number of half
baths (H_Bath); the assessor’s defined house quality (Qual); the age of the house (Age); a
binary dummy for deck (Deck), and three neighborhood variables at the census block group
level: housing density per acre (Hous_Dens); median housing value (MedHsg_Val); and the
percentage of the black population (Perc_Black). The variable that captures the externality
was the GIVI with k¼2. The dependent variable Yi¼Sales_HPI9 is the sale price of the
homes. The sale prices were adjusted using the 2009 house price index for the Worcester
metropolitan area obtained from the Office of Federal Housing Enterprise (2009). The
descriptive statistics of the variables are listed in Table 1.

The regression coefficients were computed to estimate the implicit prices of the individual
characteristics of the homes. The generic form of the initial OLS based global hedonic model
was specified as:

Y Sale priceð Þ ¼ f Xstructural,Xneigborhood,XExternality

� �
ð4Þ

Or Sales HPI9 ¼ LotSqftþ TULAþ BathþH BathþQualþ AgeþDeck Structureð Þ

þHous DensþMedHsg Valþ Perc Black Neighborhoodð Þ

þGIVI � Externalityð Þ

þ"i Errorð Þ

The candidate variables were found free of multi-collinearity with VIF<3 for all 11
predictors and the OLS model was found to be robust. Using the residual values from
this model, the test of heteroscedasticity was conducted as a visual analysis. Furthermore,
on plotting the residuals, the errors were found to be randomly scattered with no systematic
patterns, which signifies homoscedasticity. In SPSS, the Breusch–Pagan test for
heteroscedasticity was run and the small chi-squared value indicated that
heteroscedasticity was absent.

The local GWR model. The GWR methodology was used to estimate the premium price effect.
GWR explores spatial non-stationarity and provides mappable statistics to visualize the
spatial patterns of the relationships between dependent and independent variables
(Brunsdon et al., 1996). In conjunction with the OLS-based global model outlined above,
a semi-parametric local GWR model was employed in the form shown below:

Yi ¼ �0i þ
X

k
�k ui, við Þxk,i þ

X
l
�izl,i þ "i ð5Þ

where Yi is the house price at location i; �0i is the intercept parameter at location i; �k is the
kth locally varying coefficient of xk,i variables at location i (with u,v coordinates); �i is a fixed
coefficient of zli variables where zli is the lth independent variable. Equation (5) has two
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parts; the first half is the local model, the second half is the global model and the last element
is the error term.

A semi-parametric GWR model was chosen because the predictor variables had spatially
varying characteristics at the local level and fixed characteristics at the neighborhood level.
Nakaya (2014) recommended that such a mixed model may reduce complexities and enhance
the model’s prediction performance. Crespo and Regamey (2013) provide details on the use
of a similar mixed-GWR method for a study conducted in Zurich.

After calibrating the OLS model, the Geographically Weighted Regression software
(GWR4.0) was utilized to model the geographically varying relationships between the
house prices (Sales_HPI9) as the dependent variable and the house characteristics as
independent variables (Fotheringham et al., 2002). This model was employed to extract
the locally varying nature of price contributory variables. In GWR, a series of local point
regressions were calibrated at each target regression location resulting in individual
regression models for each Homei location. This weighting was achieved through a kernel
function with a given bandwidth.

The observed values to calibrate the local models were geographically weighted based on
their proximity to the regression point so that data from near observations were weighted
higher than the ones farther away. A Gaussian model with adaptive spatial kernels using a
bi-square function as defined in Nakaya (2014) was used. For the selection of bandwidth, an
automated golden section search method was employed to determine the optimal size for the
bandwidth. The minimum AIC bandwidth selection criteria were chosen for estimating nine
varying coefficients (the dependent variable house price and eight independent variables of
structural attributes) and three fixed coefficients (neighborhood level variables fixed at census
block group geography) for n¼ 1243 data points. An optimal bandwidth of 186.0 with a
minimum AIC value of 29702.56 was determined by the GWR4.0 software. Furthermore,

Table 2. Global model vs. geographically weighted regression (GWR) model outcomes.

Variables

Expected

sign

Global model GWR local model

Estimates t Values Mean coefficients

Intercept 27443.32 2.16 58268.86

LotSqft þ ve 1.29 10.33 1.73

TULA þ ve 44.33 15.37 42.48

Bath þ ve 12182.59 4.33 10575.07

H_Bath þ ve 2216.28 0.91 1405.16

Qual þ ve 956.73 2.93 2134.23

Age � ve �278.08 �7.00 �235.9

Deck þ ve 303.93 0.12 1219.33

Hous_Dens � ve �961.3 �1.92 �2153.45

MedHsg_Val þ ve 0.31 6.02 �0.31

Perc_Black � ve �531.17 �2.21 �756.90

GIVI_2 þ ve 2843.08 1.22 83855.97

Diagnostics

Adjusted Rsq 0.518 0.589

AIC 29,828 29702.56

Bandwidth Global

N¼ 1243 all significant at p< 0.05 in global model

74 Environment and Planning B: Urban Analytics and City Science 46(1)



Table 6. GWR diagnostic information.

Residual sum of squares 1426108525329.80

Effective number of parameters (model: trace(S)) 121.62

Effective number of parameters (variance: trace(S’S)) 93.84

Degree of freedom (model: n - trace(S)) 1121.38

Degree of freedom (residual: n - 2trace(S)þ trace(S’S)) 1093.60

ML based sigma estimate 33871.99

Unbiased sigma estimate 36111.60

�2 log-likelihood 29457.32

Classic AIC 29702.56

AICc 29729.64

BIC/MDL 30331.03

CV 1766921577.89

R square 0.64

Adjusted R square 0.59

Table 4. Global regression results.

Residual sum of squares 1882199518757.44

ML based global sigma estimate 38913.23

Unbiased global sigma estimate 39102.44

�2 log-likelihood 29802.24

Classic AIC 29828.24

AICc 29828.53

BIC/MDL 29894.87

CV 1585325516.31

R square 0.522

Adjusted R square 0.518

Table 3. GWR ANOVA table.

Source SS DF MS F

Global Residuals 1882199518757.4 1231.0

GWR Improvement 456090993427.6 137.4 3319480301.3

GWR Residuals 1426108525329.8 1093.6 1304047481.2 2.55

Table 5. GWR bandwidth selection.

Bandwidth search Golden section search

Best bandwidth size 186

Minimum AIC 29702.56
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Figure 4. Spatially varying characteristics of GIVI values, R-squared values, and Cooks’ D.

Table 8. Summary statistics for varying (Local) coefficients from GWR.

Variables Mean STD Min Max Range

Lower

Quartile Median

Upper

Quartile

Intercept 58268.86 118567.95 �202988.56 227138.07 430126.64 �45616.46 90343.80 163479.49

LOTSFt 1.73 1.15 �0.077 5.87 5.95 1.02 1.34 2.25

BATH 10575.07 8722.39 �13722.46 26032.27 39754.73 3894.76 14403.61 17406.47

HBATH 1405.16 8600.31 �20104.55 22643.65 42748.21 �4286.32 750.26 9160.18

QUAL 2134.23 3196.64 �2602.87 8940.02 11542.89 �928.87 1572.36 4900.97

DECK 1219.33 7742.62 �17292.99 22486.52 39779.51 �3993.04 2275.12 5707.25

TULA 42.48 12.84 10.70 80.61 69.91 33.49 40.72 52.96

AGE �235.958 161.61 �723.07 147.32 870.39 �306.86 �201.80 �146.11

GIVI_2 83855.98 864582.05 �2990132.05 3856094.09 6846226.14 �26579.53 �1677.87 4122.60

Table 7. Fixed (Global) coefficients.

Variables Estimate Standard Error t(Estimate/SE)

HOUS_DEN �2153.45 748.41 �2.88

MD_HSgVal �0.31 0.14 �2.29

PRC_BLAC �756.90 285.33 �2.65
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since the GIVI (k,i) was a function of location (i) for a chosen distance-decay k, the output of
the GWR � coefficients varied for each Homei and for the chosen k.

Results

A comparison was made between the global model and the local GWR model.
Comparatively, the results of the GWR model were more pronounced. The global model

Figure 5. Spatially variation of absolute premium (in $) for GIVI with k¼ 2.
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had an adjusted R-squared value of 0.518, while the local GWR model had an average
adjusted R-squared of 0.589 (Nakaya, 2014). All coefficients and their signs in both models
were as expected (see Table 2), and all the estimated coefficients were found to be significant
at p< 0.05 in the global model. The local estimates of the varying coefficients were saved in a
separate file along with the predicted values and the residuals. The mean value of the
estimated coefficients from the two models is presented in Table 2. In Table 3, the GWR
ANOVA shows that the model improved with lower residual values. The classic AIC from

Figure 6. Spatially varying characteristics of home premiums (percentage values).
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the global model was 29,828, which reduced to 29702.5 in the GWR model and thus
performed better. Table 4 provides global regression results with adjusted R squared
value of 0.512. Table 5 and 6 presents bandwidth selection and the diagnostic information
for the GWR model. Estimates of fixed neighborhood level coefficients are in Table 7 and
summary statistics of varying coefficients from GWR aree provided in Table 8.

The GWR model provided locally varying estimated coefficients of predictors and
adjusted R-squared values at every data point. The spatially varying characteristics of
GIVIi, the spatially varying values of the adjusted R-squared, and the residuals and the
Cook’s D are displayed in Figure 4. Larger values of GIVIi are represented with larger
size circles in Figure 4 (see the first figure). Consistent with the literature, the proximity of
the CE amenity was found to be important. Higher values of GIVI and the adjusted
R-squared values were found to cluster around the edges of the CE parcels. Note that in
Figure 4, the first and second figures show clusters of higher GIVI values and adjusted
R-squared values. This is due to the proximity effect. Similarly, consistent with the
literature that the view of the scenic amenity is important, higher values of adjusted R-
squared were found to cluster around the larger sized CE parcels. This is the view effect
or more scenic area effect. The adjusted R-squared values for Homei were also found to be
relatively higher near and around the larger sized CE parcels.

Moran’s I statistic was computed to test for any spatial auto-correlation in the residuals.
The positive but very low values of Moran’s I of 0.039, p< 0.26, and z¼ 2.224 signified
extremely low positive autocorrelation in the GWR results. Cook’s D values were also
analyzed and exhibited low variation, meaning there were no specific observation points
(i.e. home samples) that were more important than others in the model.

The only explanatory variable of interest that captures the value of the externality was
GIVI (Mean¼ 0.07, SD¼ 0.48), where the estimated coefficient for GIVI from the global
model was a � of 2843.08. This � value was statistically significant but practically
insignificant when converted to dollar terms. The value in dollar terms means a $199
premium on average homes in the sample. This is a relatively insignificant $ premium for
n¼ 1243 homes with a sale price of M¼ $174,313 and SD¼ $56,361 in the global model.
Further investigation revealed that the home with the maximum value of GIVI has a value
premium of $25,274. The value of $ premiums on house prices was estimated as the cross
product of a home’s GIVIi estimate and its corresponding �i value for a given location i, i.e.
the cross product of Max GIVI¼ 8.89 and �¼ 2843.08.

In contrast, the GWR model provided a much finer spatially varying characteristic of the
GIVI test variable and its price contributing role in house prices. As a comparison, the mean
value of the estimated coefficient for GIVI from the local GWRmodel was �Mean¼ 83,855.97
and SD¼ 864,582. The average premium for n¼ 1243 homes with a sale price of
M¼ $174,313 and SD ¼ $56,361 in the GWR model was 3.4% or $5870 of the mean
house prices. This was estimated as the cross product of (Mean GIVI value¼ 0.07)�
(�¼ 83,855.97) in the GWR model.

Both GIVIi and �i values vary spatially, which is shown in Figure 5. Note that the higher
home value premium was found to be clustered near the CE parcels due to the proximity
effect, but these premium values were also the highest near the larger sized scenic CE parcels
due to the scenic view effect. From the model, it can be concluded that, on average, homes in
the sample in Worcester city accrued a 3.4% incremental price premium as estimated by the
GWR model. Figure 6 presents spatial variation in home premiums (as percentage values).
The highest premium for select homes was estimated to be as high as 34.6% of the average
home price. This percentage value is a significant value enhancement. These estimated higher
percentages in the premiums are shown as larger sized circles in Figure 4 (first figure) and in

Mittal and Byahut 79



Figures 5 and 6 with large size plus signs. Note that spatially these high premium values
clustered around larger sized clusters of CE parcels. Moreover, it can be noted that no
premium was observed on homes that were farther away from the CE parcels, shown as
white dots in Figure 5.

Conclusions

Consistent with the literature, the findings in this paper support the notion that perpetually
preserved scenic landscapes increase the desirability of a neighborhood and that the local
real estate and housing markets respond to these neighborhood greening efforts positively.
The findings in this article support the established notion that proximity to environmental
amenities in a pleasant neighborhood is a significant price contributor to the value of homes
(Crompton, 2005). It can also be concluded from this article that the size of the scenic views
and the distance of the view are both significant contributors to home premiums. Amenity
seeking homeowners in the study area preferred to locate where they could maximize their
view while minimizing the distance from the amenity, as evident from the clustered nature of
the GIVI and the value contributing effect of the GIVI near larger CE clusters.

Notably, among the sample of homes used, there were a few clusters of homes that
experienced negative GIVIi coefficients. Empirical evidence and the literature support the
fact that safer, quieter, cleaner, and well preserved attractive neighborhoods contribute to
the value of homes due to amenity effects. However, the proximity of disamenities such as
crime (Troy and Grove, 2008), flood hazards (Bin et al., 2008), and hotspots of noisy
highways, rail lines, heavy traffic areas (Lake et al., 1998), bars, liquor stores and
fast-food joints have negative effects on the value of homes. These negative GIVIi
coefficients were most likely the effects of localized negative features. These observed
negative value clusters could potentially be due to the localized negative effects of crime
hotspots, noise and more importantly the threat of infestations near the wooded areas.

We also showed that GWR is a useful spatial exploratory tool, but like other analytic
methods, it has limitations. A few issues include kernel bandwidth selection criteria,
multicollinearity, and the challenge that presentation and synthesis of a large number of
mappable results generated by local GWR models pose (Matthews and Yang, 2012).
Another criticism of GWR is that when the GWR algorithm is applied to spatially
random data points, it is still possible to see some form of spatial pattern in the estimated
parameters (Fotheringham et al., 2002: 83).

Despite these limitations, it is clear from this study that CEs have positive effects on
property values. Local municipal agencies can create scenarios of enhanced local property
taxes due to the value enhancement of homes near conserved lands, i.e. an incremental value
premium of 3.4%. These incremental taxes could be used to promote more local level land
conservation efforts and improve the quality of life in the local communities, further
enhancing the value of these homes.

CEs are officially sponsored by both private and public efforts and benefit both parties.
To attract businesses and homeowners, private landowners, municipal policy makers, and
elected officials could advocate for neighborhood greening efforts using CEs as this can help
them achieve their sustainability agendas and bring nature back into the city. Using the
approach and findings from this paper, local land conservation agencies, urban planners and
cities could strategically identify lands and spatially target land parcels in their conservation
efforts using the view and distance based interaction approach presented here.

For researchers, this paper provides a useful methodological contribution in estimating
the value of visual accessibility; it provides useful insights for real estate appraisers on
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integrating GIS-based viewshed techniques in real estate valuation. The methodology is
useful as it can be directly employed as an automated-computation tool in an objective
way without physically visiting every individual site. The methodology can also be applied
to evaluating the effect of other environmental externalities in any other location.
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