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Classical Decomposition

A basic model for representing a time series is the additive
model

yt = µt + γt + εt , t = 1, . . . ,n,

also known as the Classical Decomposition.

yt = observation,
µt = slowly changing component (trend),
γt = periodic component (seasonal),
εt = irregular component (disturbance).
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Local Level Model
• Components can be

• deterministic functions of time (e.g. polynomials), or
• stochastic processes;

• Examples
• Deterministic: linear trend

yt = δ0 + δ1t + εt , εt ∼ NID(0, σ2
ε)

• Stochastic: Random Walk plus Noise, or Local Level model:

yt = µt + εt , εt ∼ NID(0, σ2
ε)

µt+1 = µt + ηt , ηt ∼ NID(0, σ2
η),

• Initial condition: µ1 ∼ N (a,P);
• The disturbances εt , ηs are independent for all s, t ;
• LL is a simple instance of a Structural Time Series Model

(STSM) or Unobserved Components Model (UCM).
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Local Level Model

yt = µt + εt , εt ∼ NID(0, σ2
ε )

µt+1 = µt + ηt , ηt ∼ NID(0, σ2
η),

µ1 ∼ N (a,P)

• The level µt and the error term εt are unobserved;
• Parameters: a,P, σ2

ε , σ
2
η ;

• Trivial special cases:
• σ2

η = 0 =⇒ yt ∼ NID(µ1, σ
2
ε) (White Noise with

constant level);
• σ2

ε = 0 =⇒ yt+1 = yt + ηt (pure Random Walk);
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Simulated LL Data
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Properties of the LL model

yt = µt + εt , εt ∼ NID(0, σ2
ε ),

µt+1 = µt + ηt , ηt ∼ NID(0, σ2
η),

• First difference is stationary:

∆yt = ∆µt + ∆εt = ηt−1 + εt − εt−1.

• Dynamic properties of ∆yt :

E(∆yt ) = 0,

γ0 = E(∆yt ∆yt ) = σ2
η + 2σ2

ε ,

γ1 = E(∆yt ∆yt−1) = −σ2
ε ,

γτ = E(∆yt ∆yt−τ ) = 0 for τ ≥ 2.
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Properties of the LL model

• The ACF of ∆yt is

ρ1 =
−σ2

ε

σ2
η + 2σ2

ε

= − 1
q + 2

, q = σ2
η/σ

2
ε ,

ρτ = 0, τ ≥ 2.

• q is called the signal-noise ratio;
• The model for ∆yt is MA(1) with restricted parameters

such that
−1/2 ≤ ρ1 ≤ 0

i.e., yt is ARIMA(0,1,1);
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Local Linear Trend Model
The LLT model extends the LL model with a slope:

yt = µt + εt , εt ∼ NID(0, σ2
ε ),

µt+1 = βt + µt + ηt , ηt ∼ NID(0, σ2
η),

βt+1 = βt + ξt , ξt ∼ NID(0, σ2
ξ ).

• All disturbances are independent at all lags and leads;
• Initial distributions β1, µ1 need to specified;
• Special cases

• If σ2
ξ = 0 the trend is a random walk with constant drift β1;

(For β1 = 0 the model reduces to a Local Level model.)
• If additionally σ2

η = 0 the trend is a straight line with slope
β1 and intercept µ1;

• If σ2
ξ > 0 but σ2

η = 0, the trend is a smooth curve, or an
Integrated Random Walk;



Unobserved Component Models Linear Gaussian State Space Models Examples Programs

Trend and Slope in LLT Model
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Trend and Slope in Integrated Random Walk Model
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Seasonal Effects

We have seen specifications for µt in the basic model

yt = µt + γt + εt .

Now we will consider the seasonal term γt . Let s denote the
number of ‘seasons’ in the data:
• s = 12 for monthly data,
• s = 4 for quarterly data,
• s = 7 for daily data when modelling a weekly pattern.
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Dummy Seasonal

The simplest way to model seasonal effects is by using dummy
variables. The effect summed over the seasons should equal
zero:

γt+1 = −
s−1∑
j=1

γt+1−j .

To allow the pattern to change over time, we introduce a new
disturbance term:

γt+1 = −
s−1∑
j=1

γt+1−j + ωt , ωt ∼ NID(0, σ2
ω).

The expectation of the sum of the seasonal effects is zero.
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Trigonometric Seasonal
Defining γjt as the effect of season j at time t , an alternative
specification for the seasonal pattern is

γt =

[s/2]∑
j=1

γjt ,

γj,t+1 = γjt cosλj + γ∗jt sinλj + ωjt ,

γ∗j,t+1 = −γjt sinλj + γ∗jt cosλj + ω∗jt ,

ωjt , ω
∗
jt ∼ NID(0, σ2

ω), λj = 2πj/s.

• Without the disturbance, the trigonometric specification is
identical to the deterministic dummy specification.

• The autocorrelation in the trigonometric specification lasts
through more lags: changes occur in a smoother way;
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Seatbelt Law
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Cycles

We can extend the basic model with cycle ψt

yt = µt + γt + ψt + εt ,

where ψt can be deterministic

ψt = A cos(λt + B)

or stochastic

ψt+1 = ρ
[
ψt cosλ+ ψt∗ sinλ

]
+ κt ,

ψ∗t+1 = ρ
[
−ψt sinλ+ ψ∗t cosλ

]
+ κ∗t ,

κt , κ
∗
t ∼ NID(0, σ2

κ).
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State Space Model: a more general class of models
Linear Gaussian state space model is defined in three parts:

→ State equation:

αt+1 = Ttαt + Rtζt , ζt ∼ NID(0,Qt ),

→ Observation equation:

yt = Ztαt + εt , εt ∼ NID(0,Ht ),

→ Initial state distribution α1 ∼ N (a1,P1).

Notice that
• ζt and εs independent for all t , s, and independent from α1;
• observation yt can be multivariate;
• state vector αt is unobserved;
• matrices Tt ,Zt ,Rt ,Qt ,Ht determine structure of model.
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State Space Model
• state space model is linear and Gaussian: therefore

properties and results of multivariate normal distribution
apply;

• state vector αt evolves as a VAR(1) process;
• system matrices usually contain unknown parameters;
• estimation has therefore two aspects:

• measuring the unobservable state (prediction, filtering and
smoothing) conditional on unknown parameters;

• estimation of unknown parameters (maximum likelihood
estimation);

• state space methods offer a unified approach to a wide
range of models and techniques: dynamic regression,
ARIMA, UC models, latent variable models, spline-fitting
and many ad-hoc filters;

• next, some well-known model specifications in state space
form ...
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Regression with Time Varying Coefficients

General state space model:

αt+1 = Ttαt + Rtζt , ζt ∼ NID(0,Qt ),

yt = Ztαt + εt , εt ∼ NID(0,Ht ).

Put regressors in Zt ,

Tt = I, Rt = I,

Result is regression model with coefficient αt following a
random walk.
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ARMA in State Space Form
Example: AR(2) model yt+1 = φ1yt +φ2yt−1 + ζt , in state space:

αt+1 = Ttαt + Rtζt , ζt ∼ NID(0,Qt ),

yt = Ztαt + εt , εt ∼ NID(0,Ht ).

with 2× 1 state vector αt and system matrices:

Zt =
[
1 0

]
, Ht = 0

Tt =

[
φ1 1
φ2 0

]
, Rt =

[
1
0

]
, Qt = σ2

• Zt and Ht = 0 imply that α1t = yt ;
• First state equation implies yt+1 = φ1yt + α2t + ζt with
ζt ∼ NID(0, σ2);

• Second state equation implies α2,t+1 = φ2yt ;
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ARMA in State Space Form
Example: MA(1) model yt+1 = ζt + θζt−1, in state space:

αt+1 = Ttαt + Rtζt , ζt ∼ NID(0,Qt ),

yt = Ztαt + εt , εt ∼ NID(0,Ht ).

with 2× 1 state vector αt and system matrices:

Zt =
[
1 0

]
, Ht = 0

Tt =

[
0 1
0 0

]
, Rt =

[
1
θ

]
, Qt = σ2

• Zt and Ht = 0 imply that α1t = yt ;
• First state equation implies yt+1 = α2t + ζt with
ζt ∼ NID(0, σ2);

• Second state equation implies α2,t+1 = θζt ;
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ARMA in State Space Form

Example: ARMA(2,1) model

yt = φ1yt−1 + φ2yt−2 + ζt + θζt−1

in state space form

αt =

[
yt

φ2yt−1 + θζt

]
Zt =

[
1 0

]
, Ht = 0,

Tt =

[
φ1 1
φ2 0

]
, Rt =

[
1
θ

]
, Qt = σ2

All ARIMA(p,d ,q) models have a (non-unique) state space
representation.
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UC models in State Space Form

State space model: αt+1 = Ttαt + Rtζt , yt = Ztαt + εt .

LL model ∆µt+1 = ηt and yt = µt + εt :

αt = µt , Tt = 1, Rt = 1, Qt = σ2
η ,

Zt = 1, Ht = σ2
ε .

LLT model ∆µt+1 = βt + ηt , ∆βt+1 = ξt and yt = µt + εt :

αt =

[
µt
βt

]
, Tt =

[
1 1
0 1

]
, Rt =

[
1 0
0 1

]
, Qt =

[
σ2
η 0

0 σ2
ξ

]
,

Zt =
[
1 0

]
, Ht = σ2

ε .
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UC models in State Space Form

State space model: αt+1 = Ttαt + Rtζt , yt = Ztαt + εt .

LLT model with season: ∆µt+1 = βt + ηt , ∆βt+1 = ξt ,
S(L)γt+1 = ωt and yt = µt + γt + εt :

αt =
[
µt βt γt γt−1 γt−2

]′
,

Tt =


1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

 , Qt =

σ2
η 0 0

0 σ2
ξ 0

0 0 σ2
ω

 , Rt =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 ,
Zt =

[
1 0 1 0 0

]
, Ht = σ2

ε.
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How to estimate state space models?

Let us go to rocket science
Use of Kalman filter: Apollo program, NASA Space Shuttle,
Navy submarines, unmanned aerospace vehicles
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Books on state space models and Kalman filter
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Kalman Filter

• The Kalman filter calculates the mean and variance of the
unobserved state, given the observations.

• The state is Gaussian: the complete distribution is
characterized by the mean and variance.

• The filter is a recursive algorithm; the current best estimate
is updated whenever a new observation is obtained.

• To start the recursion, we need a1 and P1
(α1 ∼ N (a1,P1)), which we assume to be given.

• There are various ways to initialize when a1 and P1 are
unknown, which we will not discuss here.
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Kalman Filter

The unobserved state αt can be estimated from the
observations with the Kalman filter. Define
Yt = {y1, . . . , yt},at+1 = E(αt+1|Yt ),Pt+1 = Var(αt+1|Yt ).

vt = yt − Ztat ,

Ft = ZtPtZ ′t + Ht ,

Kt = TtPtZ ′t F
−1
t ,

at+1 = Ttat + Ktvt ,

Pt+1 = TtPtT ′t + RtQtR′t − KtFtK ′t ,

for t = 1, . . . ,n and starting with given values for a1 and P1.
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Kalman Filter

State space model: αt+1 = Ttαt + Rtζt , yt = Ztαt + εt .

• Writing Yt = {y1, . . . , yt}, define

at+1 = E(αt+1|Yt ), Pt+1 = Var(αt+1|Yt );

• The prediction error is

vt = yt − E(yt |Yt−1)

= yt − E(Ztαt + εt |Yt−1)

= yt − Zt E(αt |Yt−1)

= yt − Ztat ;

• It follows that vt = Zt (αt − at ) + εt and E(vt ) = 0;
• The prediction error variance is Ft = Var(vt ) = ZtPtZ ′t + Ht .
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Lemma
The proof of the Kalman filter uses a lemma from multivariate
Normal regression theory.

Lemma Suppose x , y and z are jointly Normally distributed
vectors with E(z) = 0 and Σyz = 0. x

y
z

 ∼ N (

 µx
µy
0

 ,

 Σxx Σxy Σxz
Σ′xy Σyy 0
Σ′xz 0 Σzz

)

Then

E(x |y , z) = E(x |y) + ΣxzΣ−1
zz z,

Var(x |y , z) = Var(x |y)− ΣxzΣ−1
zz Σ′xz ,
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Kalman Filter
State space model: αt+1 = Ttαt + Rtζt , yt = Ztαt + εt .

• Yt = {Yt−1, yt} = {Yt−1, vt}, E(vtyt−j) = 0, j = 1, . . . , t − 1
• Apply Lemma

x = αt+1, E(x |y) = E(αt+1|Yt−1) = Ttat ,
y = Yt−1, Var(x |y) = Var(αt+1|Yt−1) =
z = vt , Σzz = Var(vt ) = Ft ,

Σxz = Cov(αt+1, vt ) = TtPtZ ′t ,
Cov(αt+1, vt ) = Cov(Ttαt + Rtζt ,Zt (αt − at ) + εt ) = TtPtZ ′t
Var(αt+1|Yt−1) = TtPtT ′t + RtQtR′t

• We carry out lemma and obtain the state update

at+1 = E(αt+1|Yt−1, yt ) = E(αt+1|Yt−1, vt )

= Ttat + TtPtZ ′t F
−1
t vt = Ttat + Ktvt ;

Pt+1 = Pt+1 = TtPtT ′t + RtQtR′t − KtFtK ′t .

with Kt = TtPtZ ′t F
−1
t
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Kalman Filter

• Conditional on Yt−1 the best prediction of yt is N (Ztat ,Ft )

• When the actual observation arrives, the prediction error
(yt − Ztαt )|Yt−1 is distributed as N (vt ,Ft )

• The best prediction of the new state αt+1 is based both on
the old estimate at and the new information vt :

αt+1|Yt ∼ N (at+1 = Ttat +Ktvt ,Pt+1 = TtPtT ′t +RtQtR′t−KtFtK ′t )

• The Kalman gain

Kt = TtPtZ ′t F
−1
t

is the optimal weighting matrix for the new evidence.
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Kalman Filter Illustration
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Smoothing
• The filter calculates the mean & variance conditional on Yt ;
• The Kalman smoother calculates the mean and variance

conditional on the full set of observations Yn;
• After the filtered estimates are calculated, the smoothing

recursion starts at the last observations and runs until the
first.

α̂t = E(αt |Yn), Vt = Var(αt |Yn),

rt = weighted sum of innovations, Nt = Var(rt ),

Lt = Tt − KtZt .

Starting with rn = 0, Nn = 0, the smoothing recursions are
given by

rt−1 = F−1
t vt + Lt rt , Nt−1 = F−1

t + L′tNtLt ,

α̂t = at + Pt rt−1, Vt = Pt − PtNt−1Pt .
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Smoothing Illustration
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Filtering and Smoothing
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Missing Observations

Missing observations are very easy to handle in Kalman
filtering:

• suppose yj is missing
• put vj = 0,Kj = 0 and Fj =∞ in the algorithm
• proceed further calculations as normal

The filter algorithm extrapolates according to the state equation
until a new observation arrives. The smoother interpolates
between observations.
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Missing Observations
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Missing Observations, Filter and Smoohter
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Forecasting

Forecasting requires no extra theory: just treat future
observations as missing:
• put vj = 0,Kj = 0 and Fj =∞ for j = n + 1, . . . ,n + k
• proceed further calculations as normal
• forecast for yj is Zjaj
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Forecasting
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Parameter Estimation
The system matrices in a state space model typically depends
on a parameter vector ψ. The model is completely Gaussian;
we estimate by Maximum Likelihood.
The loglikelihood af a time series is

log L =
n∑

t=1

log p(yt |Yt−1).

In the state space model, p(yt |Yt−1) is a Gaussian density with
mean at and variance Ft :

` = log L = −n
2

log 2π − 1
2

n∑
t=1

(
log |Ft |+ v ′t F

−1
t vt

)
,

with vt and Ft from the Kalman filter. This is called the
prediction error decomposition of the likelihood. Estimation
proceeds by numerically maximising `.
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Diagnostics

• Null hypothesis: standardised residuals

vt/
√

F t ∼ NID(0,1)

• Apply standard test for Normality, heteroskedasticity, serial
correlation;

• A recursive algorithm is available to calculate smoothed
disturbances (auxilliary residuals), which can be used to
detect breaks and outliers;

• Model comparison and parameter restrictions: use
likelihood based procedures (LR test, AIC, BIC).
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Ox, SSFPack and STAMP

• Ox can be freely downloaded from
http://www.doornik.com/download.html

• SsfPack can be freely downloaded from
http://www.ssfpack.com/download.html

• Documentation
http://www.ssfpack.com/documentation.html
and http://www.ssfpack.com/files/SsfEctJ.pdf

• STAMP
(Structural Time Series Analyser, Modeller and Predictor)
http://stamp-software.com/

http://www.doornik.com/download.html
http://www.ssfpack.com/download.html
http://www.ssfpack.com/documentation.html
http://www.ssfpack.com/files/SsfEctJ.pdf
http://stamp-software.com/
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Hedonic Price Model with Time Fixed Effects (1)

• Model specification

yit = µt +xitβ+εit , εit ∼ NID(0, σ2), t = 1, . . . ,T , i = 1, . . . ,nt

• Model estimation: define ỹit = yit − ȳ.t and x̃it = xit − x̄.t

β̂ = (X̃ ′X̃ )−1X̃ ′ỹ , Var(β̂) = σ2(X̃ ′X̃ )−1,

µ̂t = ȳ.t − x̄.t β̂, Var(µ̂t ) = σ2/nt + σ2x̄.t (X̃ ′X̃ )−1x̄ ′.t ,

−2` = ln(2πσ2) +
RSS

m
,

RSS = (ỹ − X̃ β̂)′(ỹ − X̃ β̂), m =
T∑

t=1

nt − T − k ,
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Hedonic Price Model with Time Fixed Effects (2)

coef sd t-value
HouseSize 0.6609 0.0104 63.29
LotSize 0.1014 0.0070 14.41
Construction Period 1931-1944 0.0368 0.0308 1.19
Construction Period 1945-1959 -0.0975 0.0197 -4.94
Construction Period 1960-1970 -0.1131 0.0170 -6.65
Construction Period 1971-1980 -0.0469 0.0199 -2.36
Construction Period 1981-1990 -0.0349 0.0188 -1.86
Construction Period 1991-2000 -0.0161 0.0186 -0.87
Construction Period > 2001 0.0202 0.0209 0.97

σ 0.1202
Number of obs. 4100
Number of regressors 24
Number of time fixed effects 288
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Hedonic Price Model with Time Fixed Effects (3)
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Hedonic Price Model with Local Linear Trend (1)

• Model specification

yit = µt + xitβ + εit , εit ∼ NID(0, σ2),

µt+1 = µt + κt + ηt , ηt ∼ NID(0, σ2
η),

κt+1 = κt + ξt , ξt ∼ NID(0, σ2
ξ ).

• Model estimation
• Split the observations in means and deviations from means
• Estimate β on deviations data ỹ by OLS
• Apply Kalman filter on means data ȳ

• State vector αt = (β′t , µt , κt)
′ (note that βt+1 = βt + 0)

• Use β̂ and Var(β̂) as initial condition for β
• The total loglikelihood is the sum of the lglikelihood produced

by the Kalman filter and the loglikelihood from the OLS part
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Hedonic Price Model with Local Linear Trend (2)

OLS (Time Fixed Effects) OLS + KF
coef sd t-value coef sd t-value

House Size 0.6609 0.0104 63.29 0.6613 0.0105 63.22
Lot Size 0.1014 0.0070 14.41 0.1013 0.0071 14.35
Construction Period 1931-1944 0.0368 0.0308 1.19 0.0374 0.0309 1.21
Construction Period 1945-1959 -0.0975 0.0197 -4.94 -0.0979 0.0198 -4.96
Construction Period 1960-1970 -0.1131 0.0170 -6.65 -0.1127 0.0170 -6.62
Construction Period 1971-1980 -0.0469 0.0199 -2.36 -0.0465 0.0199 -2.34
Construction Period 1981-1990 -0.0349 0.0188 -1.86 -0.0354 0.0188 -1.88
Construction Period 1991-2000 -0.0161 0.0186 -0.87 -0.0166 0.0186 -0.89
Construction Period > 2001 0.0202 0.0209 0.97 0.0202 0.0209 0.97

σ 0.1202 0.1208
ση 0.0000
σξ 0.0010
Number of obs. 4100
Number of regressors 24
Number of time fixed effects 288
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Hedonic Price Model with Local Linear Trend (3)
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Number of Sales (1)
• Decompose in trend, seasaonal, irregular using STAMP

logSales 
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Number of Sales (2)

logSales Level+Intv 
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Number of Sales (3)



Unobserved Component Models Linear Gaussian State Space Models Examples Programs

Questions?
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